CS 1571 Introduction to AI Lecture 2

AI applications

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Artificial Intelligence

- The field of **Artificial intelligence**:
 - The design and study of computer systems that behave intelligently
- **AI**:
 - Focus on nontrivial problems that require reasoning and are often solved by humans
 - Goes beyond numerical computations and manipulations
- Benefits of AI research
 - Engineering aspect
 - solving of hard problems
 - Cognitive aspect
 - Understanding the nature of human intelligence

CS 1571 Intro to Al

Search and information retrieval

- Web search engines
 - Improve the quality of search
 - Rely on methods/algorithms developed in AI
 - Analysis of the link topology, web page content
 - Add inferences and knowledge to search queries
- Semantic web (or web 2):
 - From information to knowledge sharing
 - Ontology languages

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Computer systems

- Diagnosis:
 - software, technical components
- Adaptive systems
 - Adapt systems/software to user needs / preferences
 - Adapt /configure systems to specific tasks
- Examples:
 - Intelligent interfaces
 - Intelligent helper applications
 - Collaborative filtering
 - Target advertising

CS 1571 Intro to Al

Speech recognition

- Speech recognition systems:
 - Systems based on statistical and probabilistic models, (Hidden Markov models)
- Adaptive speech systems
 - Adapt to the user (training)
 - continuous speech
 - commercially available software (Nuance, IBM)
 - http://www.nuance.com/
- Multi-user speech recognition systems
 - Voice command/voice activated devices
 - Customer support systems:
 - Airline schedules, baggage tracking
 - Credit card companies

CS 1571 Intro to Al

AI applications: Medicine.

- Medical diagnosis:
 - QMR system. Internal medicine.
- Patient Monitoring and Alerting:
 - Cerner
- · Medical imaging
 - Classification of body structures and visualization
- Robotic surgeries

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Bioinformatics

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of DNA micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

Example of a microarray used in gene sequencing

CS 1571 Intro to Al

AI applications: Transportation.

Autonomous vehicle control:

- ALVINN (CMU, Pomerleau 1993).
 - Autonomous vehicle driving across US
- Series of DARPA challenges (http://www.darpa.mil/grandchallenge/)
 - 2004, 2005 Drive across Mojave desert
 - 2007 DARPA Urban Challenge
- Google autonomous vehicles

CS 1571 Intro to A

M. Hauskrecht

AI applications: Transportation.

- Vision systems:
 - Automatic plate recognition

- Pedestrian detection

- Traffic monitoring
- Navigation/route optimizations

CS 1571 Intro to Al

Classification of images or its parts

CS 1571 Intro to Al

M. Hauskrecht

Game playing

- Backgammon
 - TD-backgammon
 - a program that learned to play at the championship level (from scratch).
 - reinforcement learning
- Chess

Deep blue (IBM) program (defeated Kasparov)

• Bridge, Poker

CS 1571 Intro to Al

Natural language processing

- Understanding/annotation of free text
- IBM's Watson project
 - www.ibm.com/watson
 - Successfully competed against the top human players in Jeopardy

CS 1571 Intro to Al

M. Hauskrecht

Robots

- Robotic toys
 - Sony's Aibo(http://www.us.aibo.com/)
- Vacuum cleaners
- Humanoid robot
 - Honda's ASIMO(http://world.honda.com/robot/)

CS 1571 Intro to Al

Topics

- Problem solving and search
 - Formulating a search problem, Search methods,
 Combinatorial and Parametric Optimization.
- · Logic and knowledge representations
 - Logic, Inference
- Planning
 - Situation calculus, STRIPS, Partial-order planners,
- Uncertainty
 - Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.
- Machine Learning
 - Basic learning models, Supervised and unsupervised learning

CS 1571 Intro to Al

M. Hauskrecht

CS 1571 Introduction to AI Lecture 2

Problem solving by searching

Milos Hauskrecht

<u>milos@</u>cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

Example

Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem?

CS 1571 Intro to Al

M. Hauskrecht

Example

• Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem? Hardly, we just apply the standard formula:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

CS 1571 Intro to Al

Solving problems by searching

- Some problems have a straightforward solution
 - Just apply a known formula, or follow a standardized procedure
 - **Example:** solution of the quadratic equation
 - Hardly a sign of intelligence
- Solving more interesting problems often requires **search**:
 - more than one possible alternative needs to be explored before the problem is solved
 - the number of alternatives to search among can be very large, even infinite

CS 1571 Intro to Al

M. Hauskrecht

Search example: Route finding

• Find a route (path) from one city to another city

10

Example. Traveler problem

- Another flavor of the traveler problem:
 - find the route with **the minimum length** between S and T

Example. Puzzle 8.

• Find the sequence of move of tiles from the initial game position to the designated target position

Initial position Goal position 4 5 6 1 7 3 2 7

CS 1571 Intro to Al

Example. N-queens problem.

Find a configuration of n queens on an n x n board such that queens do not attack each other

A goal configuration

A bad configuration

CS 1571 Intro to Al

M. Hauskrecht

A search problem

is defined by:

- A search space:
 - The set of objects among which we search for the solution
 - Example: routes connecting two cities , or N-queen configurations
- A goal condition
 - What are the characteristics of the object we want to find in the search space?
 - Examples:
 - Path between cities A and B
 - Path between A and B with the smallest number of links
 - Path between A and B with the shortest distance
 - Non-attacking n-queen configuration

CS 1571 Intro to Al

Search

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object

CS 1571 Intro to Al

M. Hauskrecht

Search

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object

CS 1571 Intro to Al

Search

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object

CS 1571 Intro to Al

M. Hauskrecht

Search

- Search (process)
 - The process of exploration of the search space
- **Important**
 - We can often influence the efficiency of the search !!!!
 - We can be smart about choosing the search space, the exploration policy, and the design of the goal test

CS 1571 Intro to Al

Graph search

- Search problems can be often represented using graphs
- Typical example: Route finding
 - Map corresponds to the graph, nodes to cities, links valid moves via available connections
 - Goal: find a route (sequence of moves) in the graph from S to T

CS 1571 Intro to Al

M. Hauskrecht

Graph search

- Less obvious conversion:
 - **Puzzle 8.** Find a sequence of moves from the initial configuration to the goal configuration.
 - nodes corresponds to states of the game,
 - links to valid moves made by the player

Graph search problem

- **States** game positions, or locations on the map that are represented by nodes in the graph
- **Operators** valid moves
- **Initial state** start position, start city
- Goal state target position (positions), target city (cities)

M. Hauskrecht

Graph search

- More complex versions of the graph search problems:
 - Find the minimal length path
 (= a route with the smallest number of connections, the shortest sequence of moves that solves Puzzle 8)

CS 1571 Intro to Al

Graph search

- More complex versions of the graph search problems:
 - Find the minimum cost path(= a route with the shortest distance)

CS 1571 Intro to Al

M. Hauskrecht

N-queens

Some problems can be converted to the graph search problems

- But some problems are harder and less intuitive
 - Take e.g. N-queens problem.

Goal configuration

- Problem:
 - We look for a configuration, not a sequence of moves
 - No distinguished initial state, no operators (moves)

CS 1571 Intro to Al

N-queens

How to choose the search space for N-queens?

- Ideas? Search space:
 - all configurations of N queens on the board

M. Hauskrecht

- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal condition.

N-queens

Search space:

- all configurations of N queens on the board
- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal state.

States are: N-queen configurations

Initial state: ?

Operators (moves)?

CS 1571 Intro to Al

N-queens

Search space:

- all configurations of N queens on the board
- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal condition.

Initial state: an arbitrary N-queen configuration Operators (moves): change a position of one queen

CS 1571 Intro to Al

M. Hauskrecht

N-queens

Is there an alternative way to formulate the N-queens problem as a search problem?

• Ideas?

CS 1571 Intro to Al

N-queens

Is there an alternative way to formulate the N-queens problem as a search problem?

- **Search space:** configurations of 0,1,2, ... N queens
- Graph search:
 - States configurations of 0,1,2,...N queens
 - Operators: additions of a queen to the board
 - Initial state: no queens on the board

M. Hauskrecht

Graph search

N-queens problems

• This is a different graph search problem when compared to Puzzle 8 or Route planning:

We want to find only the target configuration, not a path

CS 1571 Intro to Al

Two types of graph search problems

- Path search
 - Find a path between states S and T
 - **Example:** traveler problem, Puzzle 8
 - Additional goal criterion: minimum length (cost) path
- Configuration search (constraint satisfaction search)
 - Find a state (configuration) satisfying the goal condition
 - Example: n-queens problem
 - Additional goal criterion: "soft" preferences for configurations, e.g. minimum cost design

CS 1571 Intro to Al

M. Hauskrecht

Search problem

Search problems that can be represented or converted into a graph search problems can be defined in terms of:

- Initial state
 - State (configuration) we start to search from (e.g. start city, initial game position)
- Operators:
 - Transform one state to another (e.g. valid connections between cities, valid moves in Puzzle 8)
- Goal condition:
 - Defines the target state (destination, winning position)
- Search space (the set of objects we search for the solution):
 - is now defined indirectly through:

the initial state + operators

CS 1571 Intro to Al

Traveler problem.

Traveler problem formulation:

States: different citiesInitial state: city Arad

• Operators: moves to cities in the neighborhood

• Goal condition: city Bucharest

• Type of the problem: path search

• Possible solution cost: path length

CS 1571 Intro to Al

M. Hauskrecht

Puzzle 8 example

4 5 <u>6</u> 7 8

Initial state

Goal state

Search problem formulation:

• **States:** tile configurations

• Initial state: initial configuration

• **Operators:** moves of the empty tile

• Goal: reach the winning configuration

· Type of the problem: path search

• Possible solution cost: a number of moves

CS 1571 Intro to Al

N-queens problem

Initial configuration

Problem formulation:

- States: configurations of 0 to 4 queens on the board
- Initial state: no-queen configuration
- Operators: add a queen to the leftmost unoccupied column
- Goal: a configuration with 4 non-attacking queens
- Type of the problem: configuration search

CS 1571 Intro to Al

M. Hauskrecht

N-queens problem

Alternative formulation of N-queens problem

Bad goal configuration

Valid goal configuration

Problem formulation:

- States: different configurations of 4 queens on the board
- **Initial state:** an arbitrary configuration of 4 queens
- Operators: move one queen to a different unoccupied position
- Goal: a configuration with non-attacking queens
- Type of the problem: configuration search

CS 1571 Intro to Al

Comparison of two problem formulations

Solution 1:

Operators: switch one of the queens

 $\binom{16}{4}$ - all configurations

Solution 2:

Operators: add a queen to the leftmost unoccupied column

 $1+4+4^2+4^3+4^4<4^5$ - configurations altogether

CS 1571 Intro to A

M. Hauskrecht

Even better solution to the N-queens

Solution 2:

 \Rightarrow

Operators: add a queen to the leftmost unoccupied column

 $<4^{5}$ - configurations altogether

Improved solution with a smaller search space

Operators: add a queen to the leftmost unoccupied column such that it does not attack already placed queens

$$\leq 1 + 4 + 4 * 3 + 4 * 3 * 2 + 4 * 3 * 2 * 1 = 65$$

- configurations altogether

CS 1571 Intro to Al

Formulating a search problem

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)
- Think twice before solving the problem by search:
 - Choose the search space and the exploration policy

CS 1571 Intro to Al