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CS 1571 Introduction to AI
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Inferences in first-order logic.
Knowledge based systems.  
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Administration announcements

Midterm: 

• Thursday, October 25, 2012

• In-class

• Closed book

What does it cover?

• All material covered by the end of lecture today

Homework 7: 

• out today to practice inferences in FOL
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Tic-tac-toe competion

The programs were played against each other 10 times (5 
times as first and 5 times as second player)

Winners:

1. Rishi Sadhir and Yuriy Koziy

3. Nathan Essel

Reward: 20% credit for the homework
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Sentences in Horn normal form

• Horn normal form (HNF) in the propositional logic
– a special type of clause with at most one positive literal

• A clause with one literal, e.g. A, is also called a fact
• A clause representing an implication (with a conjunction of 

positive literals in antecedent and one positive literal in 
consequent), is also called a rule

• Resolution rule (for clausal form) and modus ponens (for 
implicative form):
– Both are complete inference rule for unit inferences for KBs 

in the Horn normal form. 
– Recall: Not all KBs are convertible to HNF !!!

)()( DCABA 

))(()( DCAAB Implicative form:
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Horn normal form in FOL

• First-order logic (FOL)
– adds variables and quantifiers, works with terms, predicates

• HNF in FOL: primitive sentences (propositions) are formed 
by predicates

• Inference rules:  generalized versions with substitutions 
Example: modus ponens

• Generalized resolution and generalized modus ponens:
– is complete for unit inferences for the KBs in HN;
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Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:

• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the 
conclusion. Continue with rules that became satisfied.

Typical usage: If we want to infer all sentences entailed by the 
existing KB.

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule 
prove the premises of the rule. Continue recursively.

Typical usage: If we want to prove that the target (goal) 
sentence        is entailed by the existing KB.

Both procedures are complete for unit inferences in  KBs in 
Horn form !!!


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Forward chaining example

• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the 
conclusion. Continue with rules that became satisfied

),(),(),( zxFasterzyFasteryxFaster 

KB: R1:

R2:

R3:

Assume the KB with the following rules:

),()()( yxFasterySailboatxSteamboat 

),()()( zyFasterzRowBoatySailboat 

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

Theorem: ),( PondArrowTitanicFaster

F1:

F2:

F3:

?
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:
F3: )(PondArrowRowBoat

),(),(),( zxFasterzyFasteryxFaster 

),()()( yxFasterySailboatxSteamboat 
),()()( zyFasterzRowBoatySailboat 

?
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),( MistralTitanicFaster

F3: )(PondArrowRowBoat

F4:

),(),(),( zxFasterzyFasteryxFaster 

),()()( yxFasterySailboatxSteamboat 
),()()( zyFasterzRowBoatySailboat 

Rule R1 is satisfied:
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),( MistralTitanicFaster

F3: )(PondArrowRowBoat

F4:

),(),(),( zxFasterzyFasteryxFaster 

),()()( yxFasterySailboatxSteamboat 
),()()( zyFasterzRowBoatySailboat 

),( PondArrowMistralFaster
Rule R2 is satisfied:

F5:

Rule R1 is satisfied:
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Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),( MistralTitanicFaster

F3: )(PondArrowRowBoat

F4:

),(),(),( zxFasterzyFasteryxFaster 

),()()( yxFasterySailboatxSteamboat 
),()()( zyFasterzRowBoatySailboat 

),( PondArrowMistralFaster
Rule R2 is satisfied:

F5:
Rule R3 is satisfied:

),( PondArrowTitanicFasterF6:

Rule R1 is satisfied:
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Backward chaining example

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule 
prove the antecedents (if part) of the rule & repeat recursively. 

),()()( yxFasterySailboatxSteamboat 

),()()( zyFasterzRowBoatySailboat 

),(),(),( zxFasterzyFasteryxFaster 

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

KB:

Theorem: ),( PondArrowTitanicFaster

R1:

R2:

R3:

F1:

F2:

F3:
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Backward chaining example

),( PondArrowTitanicFaster

)(TitanicSteamboat

R1

)(PondArrowSailboat

),()()( yxFasterySailboatxSteamboat 

),( PondArrowTitanicFaster
}/,/{ PondArrowyTitanicx

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining example

)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(TitanicSailboat

)(PondArrowRowBoat)(PondArrowSailboat

),( PondArrowTitanicFaster
}/,/{ PondArrowzTitanicy

),()()( zyFasterzRowBoatySailboat 

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining example

),( PondArrowyFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),( yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)( ySailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining example

),( PondArrowyFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),( yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)( ySailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

y/Mistral
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Backward chaining example

),( PondArrowMistralFaster

)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),( MistralTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining example

),( PondArrowMistralFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),( MistralTitanicFaster

R3

)(TitanicSteamboat
R1

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:
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Backward chaining

),( PondArrowyFaster
)(TitanicSteamboat

R1

),( PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),( yTitanicFaster

R3

)(TitanicSteamboat
R1

)(MistralSailboat

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

y must be bound to
the same term
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Backward chaining

• The search tree: AND/OR tree

• Special search algorithms exits (including heuristics): AO, AO*

),( PondArrowyFaster
)(TitanicSteamboat

R1

)(PondArrowSailboat

),( PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat

),( yTitanicFaster

R3

)(TitanicSteamboat R1

)(MistralSailboat

R2
)(MistralSailboat

)(PondArrowRowBoat
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Knowledge-based system

• Knowledge base:
– A set of sentences that describe the world in some formal 

(representational) language (e.g. first-order logic)
– Domain specific knowledge

• Inference engine:
– A set of procedures that work upon the representational 

language and can infer new facts or answer KB queries 
(e.g. resolution algorithm, forward chaining)

– Domain independent

Knowledge base

Inference engine
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Automated reasoning systems
Examples and main differences:
• Theorem provers 

– Prove sentences in the first-order logic. Use inference rules, 
resolution rule and resolution refutation. 

• Deductive retrieval systems
– Systems based on rules (KBs in Horn form)
– Prove theorems or infer new assertions (forward, backward 

chaining) 
• Production systems

– Systems based on rules with actions in antecedents
– Forward chaining mode of operation

• Semantic networks 
– Graphical representation of the world, objects are nodes in 

the graphs, relations are various links
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Production systems
Based on rules,  but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literals 
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB (consistent with logic ?)
– QUERY the user, etc …

kn aaappp ,,, 2121  
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Production systems
Based on rules,  but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literals 
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB        !!! Different from logic
– QUERY the user, etc …

kn aaappp ,,, 2121  



13

M. HauskrechtCS 1571 Intro to AI

Production systems

• Use forward chaining to do reasoning:

– If the antecedent of the rule is satisfied (rule is said to be 
“active”) then its consequent can be executed (it is “fired”)

• Problem: Two or more rules are active at the same time. 
Which one to execute next?

• Strategy for selecting the rule to be fired from among possible 
candidates is called conflict  resolution

R27

R105

Conditions R27

Conditions R105

Actions R27

Actions R105
?
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Production systems

• Why is conflict resolution important? Or, why do we care 
about the order? 

• Assume that we have two rules and the preconditions of both 
are satisfied:

• What can happen if rules are triggered in different order?

)()()()( xDaddyCxBxA 

)()()()( xAdeletezExBxA 

R1:

R2:
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Production systems

• Why is conflict resolution important? Or, Why do we care 
about the order? 

• Assume that we have two rules and the preconditions of both 
are satisfied:

• What can happen if rules are triggered in different order?

– If R1 goes first, R2 condition is still satisfied and we infer  
D(x)

– If R2 goes first we may never infer D(x)

)()()()( xDaddyCxBxA 

)()()()( xAdeletezExBxA 

R1:

R2:
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Production systems

• Problems with production systems:

– Additions and Deletions can change a set of active rules;

– If a rule contains variables, testing all instances in which the 
rule is active may  require a large number of unifications.

– Conditions of many rules may overlap, thus requiring to 
repeat the same unifications multiple times. 

• Solution: Rete algorithm

– gives more efficient solution for managing a set of active 
rules and performing unifications

– Implemented in the system OPS-5 (used to implement 
XCON – an expert system for configuration of DEC 
computers)
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Rete algorithm

• Assume a set of rules:

• And facts:

• Rete:
– Compiles the rules to a network that merges conditions of 

multiple rules together (avoid repeats)
– Propagates valid unifications
– Reevaluates only changed conditions

)()()()( xDaddyCxBxA 

)()()()( xEaddxDyBxA 
)()()()( xAdeletezExBxA 

)5(),4(),3(),2(),2(),1( CBBBAA
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Rete algorithm. Network.

)()()()( xDaddyCxBxA 

)()()()( xEaddxDyBxA 
)()()()( xAdeletezExBxA 

)5(),4(),3(),2(),2(),1( CBBBAA

Rules:

Facts:
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Rete algorithm. Network.

)()()()( xDaddyCxBxA 

)()()()( xEaddxDyBxA 
)()()()( xAdeletezExBxA 

)5(),4(),3(),2(),2(),1( CBBBAA

Rules:

Facts:
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Conflict resolution strategies 

• Problem: Two or more rules are active at the same time. 
Which one to execute next?

• Solutions:

– No duplication (do not execute the same rule twice)

– Recency. Rules referring to facts newly added to the 
working memory take precedence

– Specificity. Rules that are more specific are preferred.

– Priority levels. Define priority of rules, actions based on 
expert opinion. Have multiple priority levels such that the 
higher priority rules fire first.
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Semantic network systems

• Knowledge about the world described in terms of graphs. 
Nodes correspond to:
– Concepts or objects in the domain.

Links to relations. Three kinds:
– Subset links (isa, part-of links)
– Member links (instance links)
– Function links.

• Can be transformed to the first-order logic language
• Graphical representation is often easier to work with 

– better overall view on individual concepts and relations

Inheritance relation links
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Semantic network. Example.

Ship

Ocean liner Oil tanker Engine Hull

Swimming
pool

Queen
Mary

Exxon
Valdez

Boiler

isa isa

member memberis-part is-part

is-part
is-part

Queen Mary is a ship
Queen Mary has a boiler

Water
Transports on

Inferred properties:


