
1

M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 15

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Inferences in first-order logic.
Knowledge based systems.

M. HauskrechtCS 1571 Intro to AI

Administration announcements

Midterm:

• Thursday, October 25, 2012

• In-class

• Closed book

What does it cover?

• All material covered by the end of lecture today

Homework 7:

• out today to practice inferences in FOL

2

M. HauskrechtCS 1571 Intro to AI

Tic-tac-toe competion

The programs were played against each other 10 times (5
times as first and 5 times as second player)

Winners:

1. Rishi Sadhir and Yuriy Koziy

3. Nathan Essel

Reward: 20% credit for the homework

M. HauskrechtCS 1571 Intro to AI

Sentences in Horn normal form

• Horn normal form (HNF) in the propositional logic
– a special type of clause with at most one positive literal

• A clause with one literal, e.g. A, is also called a fact
• A clause representing an implication (with a conjunction of

positive literals in antecedent and one positive literal in
consequent), is also called a rule

• Resolution rule (for clausal form) and modus ponens (for
implicative form):
– Both are complete inference rule for unit inferences for KBs

in the Horn normal form.
– Recall: Not all KBs are convertible to HNF !!!

)()(DCABA 

))(()(DCAAB Implicative form:

3

M. HauskrechtCS 1571 Intro to AI

Horn normal form in FOL

• First-order logic (FOL)
– adds variables and quantifiers, works with terms, predicates

• HNF in FOL: primitive sentences (propositions) are formed
by predicates

• Inference rules: generalized versions with substitutions
Example: modus ponens

• Generalized resolution and generalized modus ponens:
– is complete for unit inferences for the KBs in HN;

),(

,',',' 2121




SUBST
nn  

),()',(s.t.on substituti a ii SUBSTSUBSTi  

M. HauskrechtCS 1571 Intro to AI

Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:

• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied.

Typical usage: If we want to infer all sentences entailed by the
existing KB.

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule
prove the premises of the rule. Continue recursively.

Typical usage: If we want to prove that the target (goal)
sentence is entailed by the existing KB.

Both procedures are complete for unit inferences in KBs in
Horn form !!!



4

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied

),(),(),(zxFasterzyFasteryxFaster 

KB: R1:

R2:

R3:

Assume the KB with the following rules:

),()()(yxFasterySailboatxSteamboat 

),()()(zyFasterzRowBoatySailboat 

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

Theorem:),(PondArrowTitanicFaster

F1:

F2:

F3:

?

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:
F3:)(PondArrowRowBoat

),(),(),(zxFasterzyFasteryxFaster 

),()()(yxFasterySailboatxSteamboat 
),()()(zyFasterzRowBoatySailboat 

?

5

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster 

),()()(yxFasterySailboatxSteamboat 
),()()(zyFasterzRowBoatySailboat 

Rule R1 is satisfied:

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster 

),()()(yxFasterySailboatxSteamboat 
),()()(zyFasterzRowBoatySailboat 

),(PondArrowMistralFaster
Rule R2 is satisfied:

F5:

Rule R1 is satisfied:

6

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster 

),()()(yxFasterySailboatxSteamboat 
),()()(zyFasterzRowBoatySailboat 

),(PondArrowMistralFaster
Rule R2 is satisfied:

F5:
Rule R3 is satisfied:

),(PondArrowTitanicFasterF6:

Rule R1 is satisfied:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule
prove the antecedents (if part) of the rule & repeat recursively.

),()()(yxFasterySailboatxSteamboat 

),()()(zyFasterzRowBoatySailboat 

),(),(),(zxFasterzyFasteryxFaster 

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

KB:

Theorem:),(PondArrowTitanicFaster

R1:

R2:

R3:

F1:

F2:

F3:

7

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowTitanicFaster

)(TitanicSteamboat

R1

)(PondArrowSailboat

),()()(yxFasterySailboatxSteamboat 

),(PondArrowTitanicFaster
}/,/{ PondArrowyTitanicx

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(TitanicSailboat

)(PondArrowRowBoat)(PondArrowSailboat

),(PondArrowTitanicFaster
}/,/{ PondArrowzTitanicy

),()()(zyFasterzRowBoatySailboat 

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

8

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(ySailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(ySailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

y/Mistral

9

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowMistralFaster

)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),(MistralTitanicFaster

R3

)(TitanicSteamboat
R1

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowMistralFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),(MistralTitanicFaster

R3

)(TitanicSteamboat
R1

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

10

M. HauskrechtCS 1571 Intro to AI

Backward chaining

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat

),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(MistralSailboat

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

y must be bound to
the same term

M. HauskrechtCS 1571 Intro to AI

Backward chaining

• The search tree: AND/OR tree

• Special search algorithms exits (including heuristics): AO, AO*

),(PondArrowyFaster
)(TitanicSteamboat

R1

)(PondArrowSailboat

),(PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat

),(yTitanicFaster

R3

)(TitanicSteamboat R1

)(MistralSailboat

R2
)(MistralSailboat

)(PondArrowRowBoat

11

M. HauskrechtCS 1571 Intro to AI

Knowledge-based system

• Knowledge base:
– A set of sentences that describe the world in some formal

(representational) language (e.g. first-order logic)
– Domain specific knowledge

• Inference engine:
– A set of procedures that work upon the representational

language and can infer new facts or answer KB queries
(e.g. resolution algorithm, forward chaining)

– Domain independent

Knowledge base

Inference engine

M. HauskrechtCS 1571 Intro to AI

Automated reasoning systems
Examples and main differences:
• Theorem provers

– Prove sentences in the first-order logic. Use inference rules,
resolution rule and resolution refutation.

• Deductive retrieval systems
– Systems based on rules (KBs in Horn form)
– Prove theorems or infer new assertions (forward, backward

chaining)
• Production systems

– Systems based on rules with actions in antecedents
– Forward chaining mode of operation

• Semantic networks
– Graphical representation of the world, objects are nodes in

the graphs, relations are various links

12

M. HauskrechtCS 1571 Intro to AI

Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literals
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB (consistent with logic ?)
– QUERY the user, etc …

kn aaappp ,,, 2121  

M. HauskrechtCS 1571 Intro to AI

Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literals
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB !!! Different from logic
– QUERY the user, etc …

kn aaappp ,,, 2121  

13

M. HauskrechtCS 1571 Intro to AI

Production systems

• Use forward chaining to do reasoning:

– If the antecedent of the rule is satisfied (rule is said to be
“active”) then its consequent can be executed (it is “fired”)

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Strategy for selecting the rule to be fired from among possible
candidates is called conflict resolution

R27

R105

Conditions R27

Conditions R105

Actions R27

Actions R105
?

M. HauskrechtCS 1571 Intro to AI

Production systems

• Why is conflict resolution important? Or, why do we care
about the order?

• Assume that we have two rules and the preconditions of both
are satisfied:

• What can happen if rules are triggered in different order?

)()()()(xDaddyCxBxA 

)()()()(xAdeletezExBxA 

R1:

R2:

14

M. HauskrechtCS 1571 Intro to AI

Production systems

• Why is conflict resolution important? Or, Why do we care
about the order?

• Assume that we have two rules and the preconditions of both
are satisfied:

• What can happen if rules are triggered in different order?

– If R1 goes first, R2 condition is still satisfied and we infer
D(x)

– If R2 goes first we may never infer D(x)

)()()()(xDaddyCxBxA 

)()()()(xAdeletezExBxA 

R1:

R2:

M. HauskrechtCS 1571 Intro to AI

Production systems

• Problems with production systems:

– Additions and Deletions can change a set of active rules;

– If a rule contains variables, testing all instances in which the
rule is active may require a large number of unifications.

– Conditions of many rules may overlap, thus requiring to
repeat the same unifications multiple times.

• Solution: Rete algorithm

– gives more efficient solution for managing a set of active
rules and performing unifications

– Implemented in the system OPS-5 (used to implement
XCON – an expert system for configuration of DEC
computers)

15

M. HauskrechtCS 1571 Intro to AI

Rete algorithm

• Assume a set of rules:

• And facts:

• Rete:
– Compiles the rules to a network that merges conditions of

multiple rules together (avoid repeats)
– Propagates valid unifications
– Reevaluates only changed conditions

)()()()(xDaddyCxBxA 

)()()()(xEaddxDyBxA 
)()()()(xAdeletezExBxA 

)5(),4(),3(),2(),2(),1(CBBBAA

M. HauskrechtCS 1571 Intro to AI

Rete algorithm. Network.

)()()()(xDaddyCxBxA 

)()()()(xEaddxDyBxA 
)()()()(xAdeletezExBxA 

)5(),4(),3(),2(),2(),1(CBBBAA

Rules:

Facts:

16

M. HauskrechtCS 1571 Intro to AI

Rete algorithm. Network.

)()()()(xDaddyCxBxA 

)()()()(xEaddxDyBxA 
)()()()(xAdeletezExBxA 

)5(),4(),3(),2(),2(),1(CBBBAA

Rules:

Facts:

M. HauskrechtCS 1571 Intro to AI

Conflict resolution strategies

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Solutions:

– No duplication (do not execute the same rule twice)

– Recency. Rules referring to facts newly added to the
working memory take precedence

– Specificity. Rules that are more specific are preferred.

– Priority levels. Define priority of rules, actions based on
expert opinion. Have multiple priority levels such that the
higher priority rules fire first.

17

M. HauskrechtCS 1571 Intro to AI

Semantic network systems

• Knowledge about the world described in terms of graphs.
Nodes correspond to:
– Concepts or objects in the domain.

Links to relations. Three kinds:
– Subset links (isa, part-of links)
– Member links (instance links)
– Function links.

• Can be transformed to the first-order logic language
• Graphical representation is often easier to work with

– better overall view on individual concepts and relations

Inheritance relation links

M. HauskrechtCS 1571 Intro to AI

Semantic network. Example.

Ship

Ocean liner Oil tanker Engine Hull

Swimming
pool

Queen
Mary

Exxon
Valdez

Boiler

isa isa

member memberis-part is-part

is-part
is-part

Queen Mary is a ship
Queen Mary has a boiler

Water
Transports on

Inferred properties:

