CS 1571 Introduction to AI Lecture 13

First-order logic

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administration announcements

Midterm:

- Thursday, October 25, 2012
- In-class
- · Closed book

CS 1571 Intro to Al

First-order logic (FOL)

• More expressive than **propositional logic**

Main additions:

- Represents explicitly objects, their properties, relations and lets us make statements about them;
- Introduces variables that refer to arbitrary objects of certain type that can be substituted by a specific object
- Introduces quantifiers allowing us to make statements for groups objects without the need to represent each of them separately

CS 1571 Intro to Al

M. Hauskrecht

Logic

Logic is defined by:

• A set of sentences

 A sentence is constructed from a set of primitives according to syntax rules.

• A set of interpretations

 An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.

• The valuation (meaning) function V

Assigns a truth value to a given sentence under some interpretation

V: sentence \times interpretation $\rightarrow \{True, False\}$

CS 1571 Intro to Al

First-order logic: Syntax

Term – a syntactic entity for representing objects

Terms in FOL:

- Constant symbols: represent specific objects
 - E.g. John, France, car89
- **Variables:** represent objects of a certain type (type = domain of discourse)
 - E.g. x,y,z
- **Functions** applied to one or more terms
 - E.g. father-of (John)father-of(father-of(John))

CS 1571 Intro to Al

M. Hauskrecht

First order logic: Syntax

Sentences in FOL:

- Atomic sentences:
 - A predicate symbol applied to 0 or more terms

Examples:

```
Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));
```

- t1 = t2 equivalence of terms

Example:

John = father-of(Peter)

CS 1571 Intro to Al

First order logic: Syntax

Sentences in FOL:

- Complex sentences:
- Assume ϕ , ψ are sentences in FOL. Then:

-
$$(\phi \land \psi)$$
 $(\phi \lor \psi)$ $(\phi \Rightarrow \psi)$ $(\phi \Leftrightarrow \psi) \neg \psi$ and

$$- \forall x \phi \quad \exists y \phi$$
 are sentences

Symbols \exists , \forall

- stand for the existential and the universal quantifier

CS 1571 Intro to Al

M. Hauskrecht

Semantics: Interpretation

An interpretation *I* is defined by a **mapping** constants, predicates and function to the **domain of discourse D or relations on D**

 domain of discourse: a set of objects in the world we represent and refer to;

An interpretation *I* maps:

- Constant symbols to objects in D I(John) =
- Predicate symbols to relations, properties on D

$$I(brother) = \left\{ \left\langle \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow} \right\rangle; \left\langle \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow} \right\rangle; \dots \right\}$$

• Function symbols to functional relations on D

$$I(father-of) = \left\{ \left\langle \stackrel{\frown}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\frown}{\mathcal{T}} ; \left\langle \stackrel{\frown}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\frown}{\mathcal{T}} ; \dots \right\}$$

CS 1571 Intro to Al

Semantics of sentences

Meaning (evaluation) function:

V: sentence \times interpretation $\rightarrow \{True, False\}$

A **predicate** *predicate*(*term-1*, *term-2*, *term-3*, *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, *term-3*, *term-n* are in the relation referred to by *predicate*

 $brother(John, Paul) = \left\langle \stackrel{\frown}{\mathcal{T}} \stackrel{\frown}{\mathcal{T}} \right\rangle$ in I(brother)

V(brother(John, Paul), I) = True

CS 1571 Intro to Al

M. Hauskrecht

Semantics of sentences

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- Boolean expressions: standard

E.g.
$$V(sentence-1 \lor sentence-2, I) = True$$

Iff $V(sentence-1,I) = True$ or $V(sentence-2,I) = True$

Quantifications

$$V(\forall x \ \phi, I) = \textbf{True}$$
 substitution of x with d

Iff for all $d \in D$ $V(\phi, I[x/d]) = \textbf{True}$
 $V(\exists x \ \phi, I) = \textbf{True}$

Iff there is a $d \in D$, s.t. $V(\phi, I[x/d]) = \textbf{True}$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

 $\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

 $\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$

Typically the universal quantifier connects with an implication

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

CS 1571 Intro to Al

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

CS 1571 Intro to Al

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

 $\exists x \ at(x, CMU) \land smart(x)$

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

 $\exists x \ at(x, CMU) \land smart(x)$

Typically the existential quantifier connects with a conjunction

CS 1571 Intro to Al

Translation with quantifiers

• Assume two predicates S(x) and P(x)

Universal statements typically tie with implications

- All S(x) is P(x)
 - $\forall x (S(x) \rightarrow P(x))$
- No S(x) is P(x)
 - $\forall x (S(x) \rightarrow \neg P(x))$

Existential statements typically tie with conjunction

- Some S(x) is P(x)
 - $-\exists x (S(x) \land P(x))$
- Some S(x) is not P(x)
 - $-\exists x (S(x) \land \neg P(x))$

CS 1571 Intro to Al

M. Hauskrecht

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

?

CS 1571 Intro to Al

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

 $\exists x \forall y L(x,y)$

CS 1571 Intro to Al

M. Hauskrecht

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

Everybody loves Raymond.

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x L(x,Raymond)$
- Everybody loves somebody.

CS 1571 Intro to Al

M. Hauskrecht

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

• Everybody loves Raymond. $\forall x L(x,Raymond)$

• Everybody loves somebody. $\forall x \exists y L(x,y)$

• There is somebody whom everybody loves. ?

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x \ L(x,Raymond)$
- Everybody loves somebody. $\forall x \exists y L(x,y)$
- There is somebody whom everybody loves. $\exists y \forall x L(x,y)$
- There is somebody who Raymond doesn't love.

CS 1571 Intro to Al

M. Hauskrecht

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x L(x,Raymond)$
- Everybody loves somebody. $\forall x \exists y L(x,y)$
- There is somebody whom everybody loves. $\exists y \forall x L(x,y)$
- There is somebody who Raymond doesn't love.
 - $\exists y \neg L(Raymond, y)$
- There is somebody whom no one loves.

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x L(x,Raymond)$
- Everybody loves somebody. $\forall x \exists y L(x,y)$
- There is somebody whom everybody loves. $\exists y \forall x \ L(x,y)$
- There is somebody who Raymond doesn't love.
 - $\exists y \neg L(Raymond,y)$
- There is somebody whom no one loves.

$$\exists y \ \forall x \ \neg L(x,y)$$

CS 1571 Intro to Al

M. Hauskrecht

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

CS 1571 Intro to Al

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x $\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

Order of different quantifiers changes the meaning

 $\forall x \exists y \ loves \ (x, y)$

Everybody loves somebody

$$\exists y \forall x \ loves \ (x, y)$$

CS 1571 Intro to Al

M. Hauskrecht

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

Order of different quantifiers changes the meaning

 $\forall x \exists y \ loves \ (x, y)$

Everybody loves somebody

$$\exists y \forall x \ loves \ (x, y)$$

There is someone who is loved by everyone

CS 1571 Intro to Al

Everyone likes ice cream ?

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes \ (x, IceCream)$

CS 1571 Intro to Al

Everyone likes ice cream

 $\forall x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using an existential quantifier?

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes (x, IceCream)$

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

 $\neg \exists x \neg likes (x, IceCream)$

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

CS 1571 Intro to Al

Someone likes ice cream

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Someone likes ice cream

 $\exists x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using a universal quantifier?

CS 1571 Intro to Al

Someone likes ice cream

 $\exists x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

 $\neg \forall x \neg likes (x, IceCream)$

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

CS 1571 Intro to Al

M. Hauskrecht

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John, Mary, Jane, ...

• **Properties:** gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• **Functions:** mother-of (one for each person x)

MotherOf(x)

CS 1571 Intro to Al

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

• Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

• A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

• And so on

CS 1571 Intro to Al