CS 1571 Introduction to AI Lecture 10

Knowledge Representation. Propositional logic.

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

- Homework assignment 3 due today
- Homework assignment 4 is out
 - Programming and experiments
 - Tic-tac-toe player
 - Competition

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Knowledge-based agent

Knowledge base

Inference engine

Knowledge base (KB):

- Knowledge that describe facts about the world in some formal (representational) language
- Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. <u>Inferences typically require search.</u>
 - Domain independent

CS 1571 Intro to Al

M. Hauskrecht

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge base represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

Tf

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

• Inference engine:

 manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

CS 1571 Intro to Al

Knowledge representation

- **Objective:** express the knowledge about the world in a computer-tractable form
- Knowledge representation languages (KRLs)

Key aspects:

- Syntax: describes how sentences in KRL are formed in the language
- Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
- Computational aspect: describes how sentences and objects in KRL are manipulated in concordance with semantic conventions

Many KB systems rely on some variant of logic

CS 1571 Intro to Al

M. Hauskrecht

Logic

A formal language for expressing knowledge and for making logical inferences

Defined by:

- A set of sentences: A sentence is constructed from a set of primitives according to syntax rules
- A set of interpretations: An interpretation I gives a semantic to primitives. It associates primitives with objects or values
 - I: primitives → objects/values
- The valuation (meaning) function V:
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation $\rightarrow \{True, False\}$

CS 1571 Intro to Al

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - 5 + 2 = 8.
 - ?

CS 1571 Intro to Al

- The simplest logic
- <u>Definition</u>:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - **(F)**
 - It is raining today.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - **(T)**
 - 5 + 2 = 8.
 - **(F)**
 - It is raining today.
 - (either T or F)

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?

• ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - ?

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - ?

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

CS 1571 Intro to Al

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside, etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 1571 Intro to Al M. Hauskrecht

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via logical connectives
 - If A, B are sentences then

$$\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$$

or $(A \lor B) \land (A \lor \neg B)$

are sentences

CS 1571 Intro to Al

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

CS 1571 Intro to Al

M. Hauskrecht

Semantic: propositional symbols

A propositional symbol

- a statement about the world that is either true or false Examples:
 - Pitt is located in the Oakland section of Pittsburgh
 - It rains outside
 - Light in the room is on
- An interpretation maps symbols to one of the two values:
 True (T), or False (F), depending on whether the symbol is satisfied in the world
 - I: Light in the room is on -> True, It rains outside -> False
 - I': Light in the room is on -> False, It rains outside -> False

CS 1571 Intro to Al

Semantic: propositional symbols

The **meaning** (value) of the propositional symbol for a specific interpretation is given by its interpretation

- I: Light in the room is on -> True, It rains outside -> False

 V(Light in the room is on, I) = True

 V(It rains outside, I) = False
- I': Light in the room is on -> False, It rains outside -> False

 V(Light in the room is on, I') = False

CS 1571 Intro to Al

M. Hauskrecht

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True,False* value

$$V(True, \mathbf{I}) = True$$

$$V(False, \mathbf{I}) = False$$
For any interpretation \mathbf{I}

CS 1571 Intro to Al

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

Р	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False True	False True	True False False False	True True	True False True True	True False False True

CS 1571 Intro to Al

M. Hauskrecht

Translation

Translation of English sentences to propositional logic:

- (1) identify atomic sentences that are propositions
- (2) Use logical connectives to translate more complex composite sentences that consist of many atomic sentences

Assume the following sentence:

• It is not sunny this afternoon and it is colder than yesterday.

Atomic sentences:

- p = It is sunny this afternoon
- q = it is colder than yesterday

Translation: $\neg p \land q$

CS 1571 Intro to Al

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny.

 $r \rightarrow p$

- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset. $S \rightarrow t$

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

M. Hauskrecht

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

• Contradiction (always False)

$$P \wedge \neg P$$

• Tautology (always *True*)

$$P \vee \neg P$$

$$\neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$$

$$\neg (P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$$
DeMorgan's Laws

CS 1571 Intro to Al

Model, validity and satisfiability

- An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.
- Example:
 - Primitives: P,Q
 - Interpretations:
 - P \rightarrow True, Q \rightarrow True
 - $P \rightarrow True, Q \rightarrow False$
 - Sentence: $P \vee Q$

Model?

P Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True	True	False	True
True False		True	True
False True		False	True
False False		False	True

CS 1571 Intro to Al

M. Hauskrecht

Model, validity and satisfiability

- An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.
- Example:
 - **Primitives:** P,Q
 - Interpretations:
 - P \rightarrow True, Q \rightarrow True
 - $P \rightarrow True, Q \rightarrow False$
 - Sentence: $P \vee Q$

Model: P \rightarrow True, Q \rightarrow True

P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True False	True False True False	True True True False	False True False False	True True True True

CS 1571 Intro to Al

Model, validity and satisfiability

- An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True
- Example:
 - **Sentence:** $(P \lor Q) \land \neg Q$
 - Satisfiable?

P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True	False		True	True
False	True		False	True
False	False		False	True

CS 1571 Intro to Al

M. Hauskrecht

Model, validity and satisfiability

- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True
- Example:
 - **Sentence:** $(P \lor Q) \land \neg Q$
 - Satisfiable? Yes True for $P \rightarrow True$, $Q \rightarrow False$

P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True	False	True	True	True
False	True	True	False	True
False	False	False	False	True

CS 1571 Intro to Al

Model, validity and satisfiability

- An interpretation **is a model for a set of sentences** if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	
P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True True True False	False True False False	True True True True

CS 1571 Intro to Al M. Hauskrecht

Model, validity and satisfiability

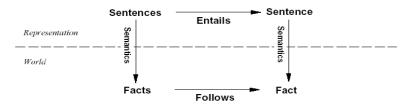
- An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	Valid sentence
Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

CS 1571 Intro to Al

Entailment

• **Entailment** reflects the relation of one fact in the world following from the others



- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if
 α is true in all worlds where KB is true

CS 1571 Intro to Al

M. Hauskrecht

Sound and complete inference

Inference is a process by which new sentences are derived from existing sentences in the KB

• the inference process is implemented on a computer

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_{\alpha} \alpha$

Properties of the inference procedure in terms of entailment

• Soundness: An inference procedure is sound

If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

Completeness: An inference procedure is complete

If $KB \models \alpha$ then it is true that $KB \models \alpha$

CS 1571 Intro to Al

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called **a theorem**),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

CS 1571 Intro to Al

M. Hauskrecht

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB = \alpha$$
?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to Al

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

 enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:		K	В	α
P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
True False	True False True False	True True True False	True False False True	True False False False

CS 1571 Intro to AI M. Hauskrecht

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

E	Example:		K	B	α
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$
	True True False False	True False True False	True	True False False True	True False False False

CS 1571 Intro to Al

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

E	xample	:	ŀ	KB	α	
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \vee \neg Q) \wedge Q$]
	True	True	True	True	True	V
	True	False	True	False	False	
	False	True	True	False	False	
	False	False	False	True	False	
				CS 1571 Intro to Al	M. I	Hauskrecht

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

\boldsymbol{A}	В	C	$A \vee C$	$(B \vee \neg C)$	KB	α
True	True	True				
True	True	False				
True	False	True				
True	False	False				
False	True	True				
False	True	False				
False	False	True				
False	False	False				

CS 1571 Intro to Al

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

\boldsymbol{A}	В	С	$A \vee C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

CS 1571 Intro to Al

M. Hauskrecht

Truth-table approach

A two steps procedure:

- 1. Generate table for all possible interpretations
- 2. Check whether the sentence α evaluates to true whenever KB evaluates to true

Example: $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$



CS 1571 Intro to Al

 $KB = (A \lor C) \land (B \lor \neg C)$ $\alpha = (A \lor B)$

A	В	С	$A \vee C$	$(B \vee \neg C)$	KB	α
True	True	True	True	True	True	True
True	True	False	True	True	True	True
True	False	True	True	False	False	True
True	False	False	True	True	True	True
False	True	True	True	True	True	True
False	True	False	False	True	False	True
False	False	True	True	False	False	False
False	False	False	False	True	False	False

KB entails α

 The truth-table approach is sound and complete for the propositional logic!!

CS 1571 Intro to Al