CS 1571 Introduction to AI Lecture 9

Finding optimal configurations

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

- Homework assignment 2 due today
- Homework assignment 3 is out
 - Programming and experiments
 - Simulated annealing + Genetic algorithm
 - Competition

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Search for the optimal configuration

Constrain satisfaction problem:

Objective: find a configuration that satisfies all constraints

Optimal configuration problem:

Objective: find the best configuration

The quality of a configuration: is defined by some quality measure that reflects our preference towards each configuration (or state)

CS 1571 Intro to Al

M. Hauskrecht

Search for the optimal configuration

Optimal configuration search:

- Configurations are described in terms of variables and their values
- Each configuration has a quality measure
- Goal: find the configuration with the best value

If the space of configurations we search among is

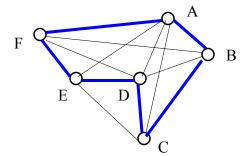
- Discrete or finite
 - then it is a combinatorial optimization problem
- Continuous
 - then it is a parametric optimization problem

CS 1571 Intro to Al

Example: Traveling salesman problem

Problem:

• A graph with distances



• **Goal:** find the shortest tour which visits every city once and returns to the start

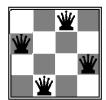
An example of a valid **tour:** ABCDEF

CS 1571 Intro to Al

M. Hauskrecht

Example: N queens

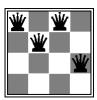
- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem?



CS 1571 Intro to Al

Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem? Yes.
- Constraints are mapped to the objective cost function that counts the number of violated constraints





of violations =0

CS 1571 Intro to Al

M. Hauskrecht

Iterative optimization methods

Properties:

- Search the space of "complete" configurations
- Take advantage of local moves
 - Operators make "local" changes to "complete" configurations
- Keep track of just one state (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!

CS 1571 Intro to Al

Example: N-queens

- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

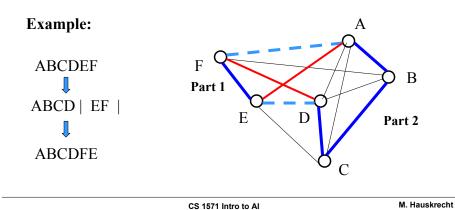
CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

"Local" operator for generating the next state:

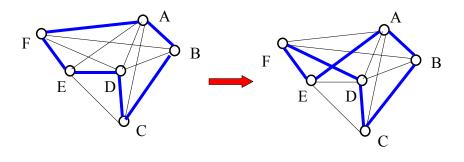
- divide the existing tour into two parts,
- reconnect the two parts in the opposite order



Example: Traveling salesman problem

"Local" operator:

generates the next configuration (state)



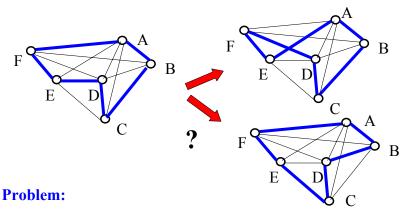
CS 1571 Intro to AI

M. Hauskrecht

Searching the configuration space

Search algorithms

• keep only one configuration (the current configuration)



• How to decide about which operator to apply?

CS 1571 Intro to Al

Search algorithms

Strategies to choose the configuration (state) to be visited next:

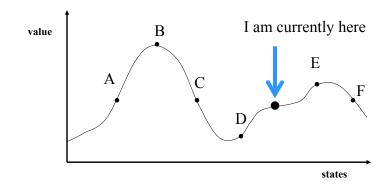
- Hill climbing
- Simulated annealing
- Extensions to multiple current states:
 - Genetic algorithms
 - Beam search
- Note: Maximization is inverse of the minimization $\min \ f(X) \Leftrightarrow \max \left[-f(X) \right]$

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

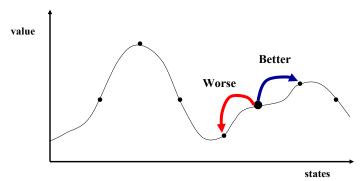
- What configurations are considered next?
- What move the hill climbing makes?



CS 1571 Intro to Al

Hill climbing

• Look at the local neighborhood and choose the one with the best value



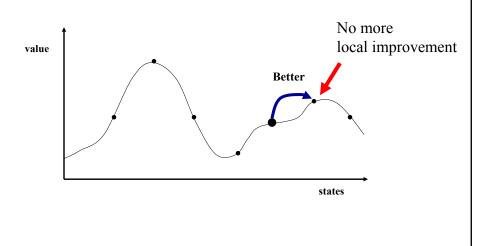
What can go wrong?

CS 1571 Intro to Al

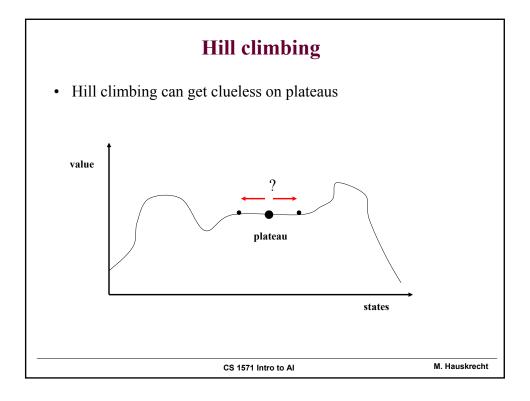
M. Hauskrecht

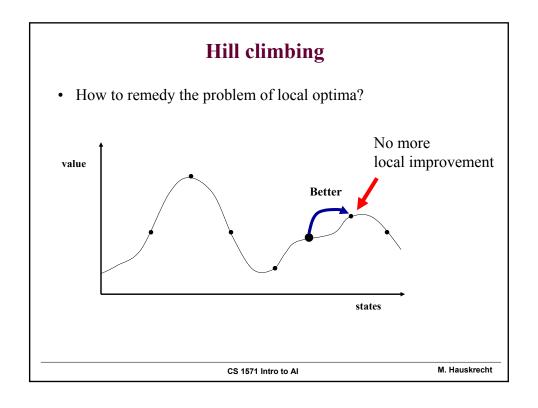
Hill climbing

• Hill climbing can get trapped in the local optimum



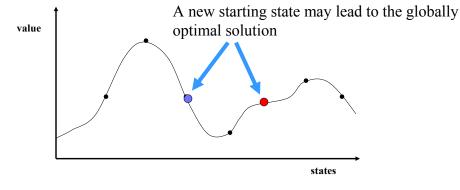
CS 1571 Intro to Al





Hill climbing

• Multiple restarts of the hill climbing algorithms from different initial states.

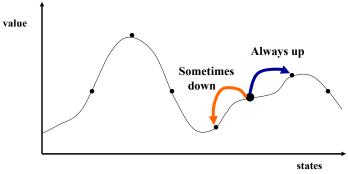


CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

- An alternative to solve the local optima problem
- Permits "bad" moves to states with a lower value hence lets us escape states that lead to a local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)



CS 1571 Intro to Al

Simulated annealing algorithm

Chooses uniformly at random one of the local neighbors of the current state – call it a candidate state

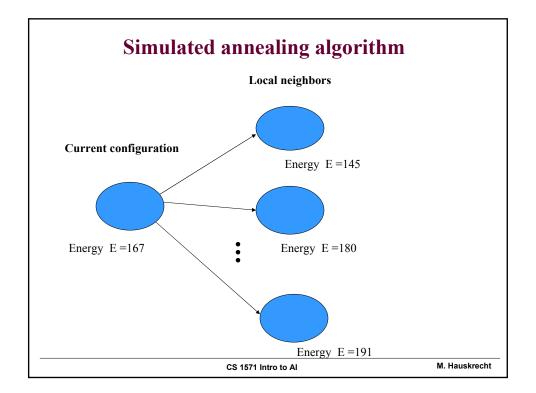
The probability of making a move into that candidate state:

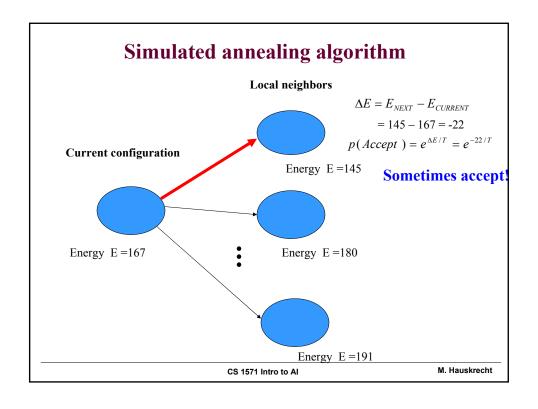
- The probability of moving into a state with a higher objective function value is 1
- The probability of moving into a candidate state with a lower objective function value is
- Let E denotes the objective function value (also called energy).

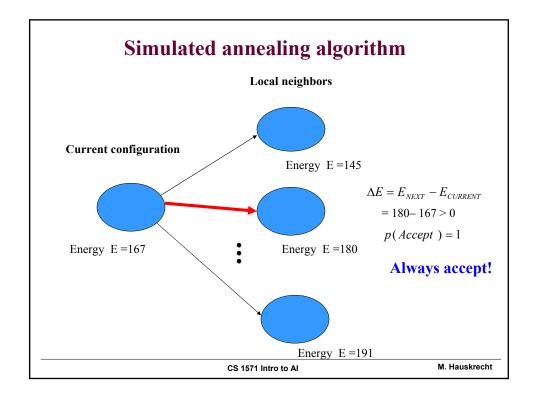
$$p(Accept \ NEXT) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$
 $T > 0$

- The probability is:
 - Proportional to the energy difference

CS 1571 Intro to Al







Simulated annealing algorithm

The probability of moving into a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps
```

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$

if T=0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow \text{Value}[next] - \text{Value}[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Simulated annealing algorithm

- Simulated annealing algorithm
 - developed originally for modeling physical processes (Metropolis et al, 53)
- Properties:
 - If T is decreased slowly enough the best configuration (state) is always reached
- Applications:
 - VLSI design
 - airline scheduling

CS 1571 Intro to Al

M. Hauskrecht

Simulated evolution and genetic algorithms

- Limitations of **simulated annealing:**
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!!)

This is the idea behind **genetic algorithms** in which we grow a population of candidate solutions generated from combination of previous configuration candidates

CS 1571 Intro to Al

Genetic algorithms

Algorithm idea:

- Create a population of random configurations
- Create a new population through:
 - Biased selection of pairs of configurations from the previous population
 - Crossover (combination) of selected pairs
 - Mutation of resulting individuals
- Evolve the population over multiple generation cycles
- Selection of configurations to be combined:
 - Fitness function = value of the objective function measures the quality of an individual (a state) in the population

CS 1571 Intro to Al

M. Hauskrecht

Reproduction process in GA

• Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1

