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Announcements

* Homework assignment 2 due today
* Homework assignment 3 is out
— Programming and experiments
— Simulated annealing + Genetic algorithm

— Competition

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
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Search for the optimal configuration

Constrain satisfaction problem:
Objective: find a configuration that satisfies all constraints

¢

Optimal configuration problem:
Objective: find the best configuration

The quality of a configuration: is defined by some quality
measure that reflects our preference towards each
configuration (or state)
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Search for the optimal configuration

Optimal configuration search:

» Configurations are described in terms of variables and their
values

» Each configuration has a quality measure
* Goal: find the configuration with the best value

If the space of configurations we search among is
* Discrete or finite

— then it is a combinatorial optimization problem
» Continuous

— then it is a parametric optimization problem
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Example: Traveling salesman problem

Problem:
* A graph with distances

* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF
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Example: N queens

» A CSP problem

* Is it possible to formulate the problem as an optimal
configuration search problem ?
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Example: N queens

» A CSP problem

* Is it possible to formulate the problem as an optimal
configuration search problem ? Yes.

* Constraints are mapped to the objective cost function that

counts the number of violated constraints

# of violations =3 # of violations =0
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Iterative optimization methods
Properties:

— Search the space of “complete” configurations
— Take advantage of local moves

» Operators make “local” changes to “complete”
configurations

— Keep track of just one state (the current state)
* no memory of past states

 !!! No search tree is necessary !!!

CS 1571 Intro to Al

M. Hauskrecht




Example: N-queens

* “Local” operators for generating the next state:
— Select a variable (a queen)
— Reallocate its position

wﬂf%ﬂf
-5
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Example: Traveling salesman problem

“Local” operator for generating the next state:
» divide the existing tour into two parts,
» reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD| EF \
1 Part 2

ABCDFE
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Example: Traveling salesman problem

“Local” operator:

— generates the next configuration (state)
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Searching the configuration space

Search algorithms
* keep only one configuration (the current configuration)

Problem:
* How to decide about which operator to apply?
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Search algorithms

Strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

» Extensions to multiple current states:
— Genetic algorithms
— Beam search

* Note: Maximization is inverse of the minimization

min f(X) < max [- f(X)]
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Hill climbing

» What configurations are considered next?
* What move the hill climbing makes?

value B I am currently here
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Hill climbing

» Look at the local neighborhood and choose the one with the
best value

value

SN

\
states

NG

* What can go wrong?
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Hill climbing

+ Hill climbing can get trapped in the local optimum

No more
value local improvement

Y
AN

states
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Hill climbing

 Hill climbing can get clueless on plateaus

value

J plateau
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states
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Hill climbing

* How to remedy the problem of local optima?

value

No more
local improvement

Better

/
A

A

states
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Hill climbing

» Multiple restarts of the hill climbing algorithms from different
initial states.

A new starting state may lead to the globally
value optimal solution

7
A

states
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Simulated annealing

* An alternative to solve the local optima problem

* Permits “bad” moves to states with a lower value hence lets us
escape states that lead to a local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

value

Always up

states

Sometimes
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Simulated annealing algorithm

Chooses uniformly at random one of the local neighbors of the
current state — call it a candidate state

The probability of making a move into that candidate state:

* The probability of moving into a state with a higher objective
function value is 1

* The probability of moving into a candidate state with a lower
objective function value is

» Let E denotes the objective function value (also called energy).

p(Accept NEXT ) =e*"'" where  AE =E .y — E corpenr

+ The probability is: r>0

— Proportional to the energy difference
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Simulated annealing algorithm

Local neighbors

Current configuration ‘

Energy E =145

Energy E =167 Energy E =180

Energy E =191
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Simulated annealing algorithm

Local neighbors
AE = E\uvr — Ecyrranr
=145-167=-22

AE/T -22/T
=e

A t)=
Current configuration pldecept) = e

Energy E =145 .
nerey Sometimes accept

Energy E =167 Energy E =180

Energy E =191
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Simulated annealing algorithm

Local neighbors

Current configuration
Energy E =145

AE=E - E CURRENT
=180-167>0

p(Accept ) =1

Energy E =167 Energy E =180

Always accept!

Energy E =191
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Simulated annealing algorithm
The probability of moving into a state with a lower value is

p(Accept ) = e™*'" where  AE = Eypy — Ecuppeny

The probability is:
— Modulated through a temperature parameter T:
e for 7' — oo the probability of any move approaches 1

« for T — 0 the probability that a state with smaller
value is selected goes down and approaches 0

* Cooling schedule:
— Schedule of changes of a parameter T over iteration steps
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Simulated annealing

function SIMULATED-ANNEALING] problem, sehedule ) returns a solution state
inputs: prablem. a problem
schedule. a mapping from time to “temperature”
static: current, anode
next, a node
T, a“temperature” controlling the probability of downward steps

current+— MAKE-NODE( INITIAL-STATE | problen |}
for f+— | to == do

T+ schedule (1]

if 7=0 then return current

next +— arandomly selected successor of current

AF +— VALUE[rext] — VALUE[current]

if AE =0 then current+— pext

else current4+— next only with probability #*7
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Simulated annealing algorithm

* Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

* Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

« Applications:
— VLSI design

— airline scheduling
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Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration at the time;
— Changes to configurations are typically local

Can we do better?

* Assume we have two configurations with good values that are
quite different

» We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a
population of candidate solutions generated from combination
of previous configuration candidates
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Genetic algorithms

Algorithm idea:
* Create a population of random configurations
* Create a new population through:

— Biased selection of pairs of configurations from the
previous population

— Crossover (combination) of selected pairs
— Mutation of resulting individuals
* Evolve the population over multiple generation cycles

* Selection of configurations to be combined:
— Fitness function = value of the objective function

measures the quality of an individual (a state) in the
population
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Reproduction process in GA

» Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1

000110010111

,m%mnnn } | 111010010111 |—w={ 111010010111 |
~ 000110010111 }/>_<‘ 000110101100 |—=| 000110101100 |
6 24% *r| 111010101100 }\>_<‘ 111010101001 =/ 111fH0101001 |
5 20% | 001110101001 ] | 001110101100 || 00111010110f] |

(a) (b) (c) idy (e)
Initial Population  Fitness Function Selection Cross—Over Mutation

-
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