CS 1571 Introduction to AI Lecture 5

Uninformed search methods II.

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

Homework assignment 1 is out

• Due on Thursday before the lecture

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Uninformed methods

- Uninformed search methods use only information available in the problem definition
 - Breadth-first search (BFS)

- Depth-first search (DFS)

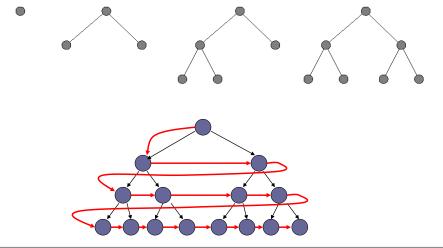
- Iterative deepening (IDA)
- Bi-directional search
- For the minimum cost path problem:
 - Uniform cost search

CS 1571 Intro to Al

M. Hauskrecht

Breadth first search (BFS)

• The shallowest node is expanded first



CS 1571 Intro to Al

Properties of breadth-first search

- Completeness: Yes. The solution is reached if it exists.
- Optimality: Yes, for the shortest path.
- Time complexity:

$$1+b+b^2+...+b^d=O(b^d)$$

exponential in the depth of the solution d

• Memory (space) complexity:

$$O(b^d)$$

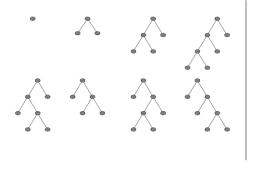
same as time - every node is kept in the memory

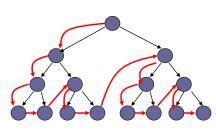
CS 1571 Intro to Al

M. Hauskrecht

Depth-first search (DFS)

- The deepest node is expanded first
- Backtrack when the path cannot be further expanded





CS 1571 Intro to Al

Properties of depth-first search

- Completeness: No. Infinite loops can occur.
- **Optimality:** No. Solution found first may not be the shortest possible.
- Time complexity:

 $O(b^m)$

exponential in the maximum depth of the search tree m

• Memory (space) complexity:

O(bm)

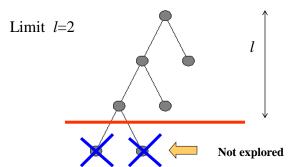
linear in the maximum depth of the search tree m

CS 1571 Intro to Al

M. Hauskrecht

Limited-depth depth first search

- How to eliminate infinite depth first exploration?
- Put the limit (1) on the depth of the depth-first exploration



• Time complexity: $O(b^l)$

• Memory complexity: O(bl)

- is the given limit

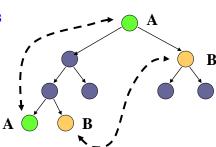
Elimination of state repeats

While searching the state space for the solution we can encounter the same state many times.

Question: Is it necessary to keep and expand all copies of states in the search tree?

Two possible cases:

- (A) Cyclic state repeats
- (B) Non-cyclic state repeats



Search tree

CS 1571 Intro to Al

M. Hauskrecht

Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search, but
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

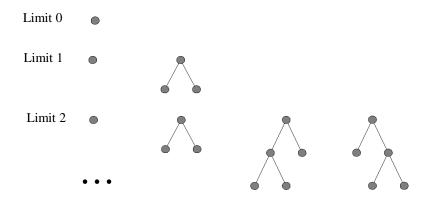
That is, search first with the depth limit l=0, then l=1, l=2, and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead

CS 1571 Intro to Al

Iterative deepening algorithm (IDA)

• Progressively increases the limit of the limited-depth depth-first search

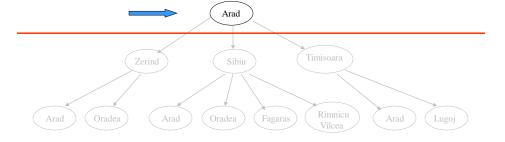


CS 1571 Intro to Al

M. Hauskrecht

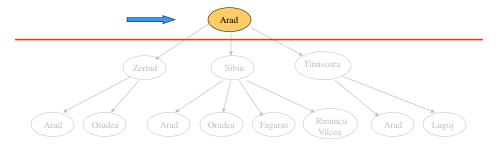
Iterative deepening

Cutoff depth = 0



CS 1571 Intro to Al

Cutoff depth = 0

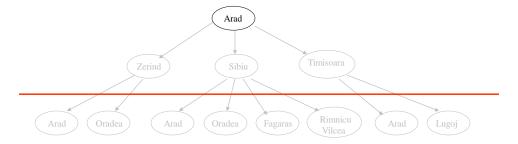


CS 1571 Intro to Al

M. Hauskrecht

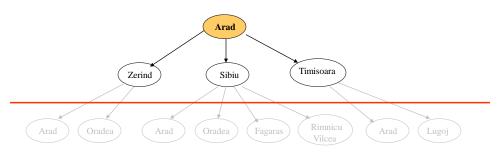
Iterative deepening

Cutoff depth = 1



CS 1571 Intro to Al

Cutoff depth = 1

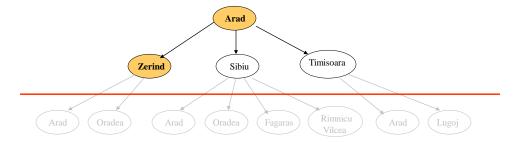


CS 1571 Intro to Al

M. Hauskrecht

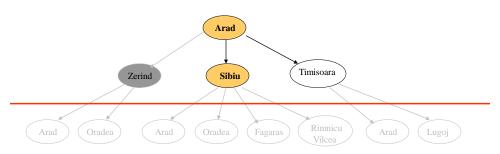
Iterative deepening

Cutoff depth = 1



CS 1571 Intro to Al

Cutoff depth = 1

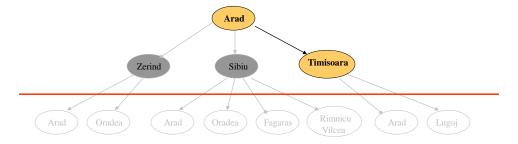


CS 1571 Intro to Al

M. Hauskrecht

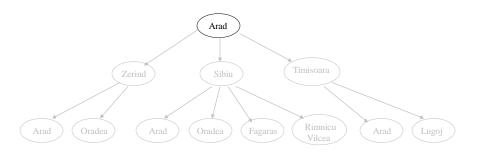
Iterative deepening

Cutoff depth = 1



CS 1571 Intro to Al

Cutoff depth = 2

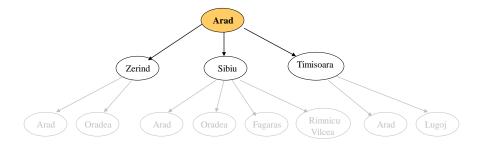


CS 1571 Intro to Al

M. Hauskrecht

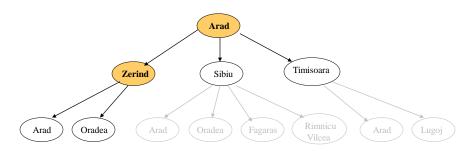
Iterative deepening

Cutoff depth = 2



CS 1571 Intro to Al

Cutoff depth = 2

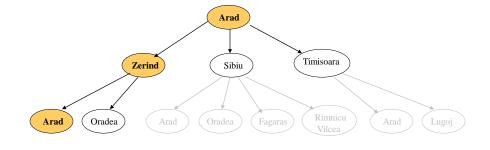


CS 1571 Intro to Al

M. Hauskrecht

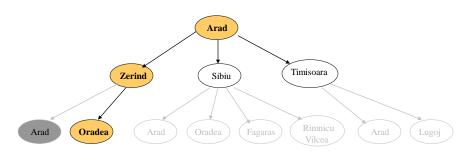
Iterative deepening

Cutoff depth = 2



CS 1571 Intro to Al

Cutoff depth = 2

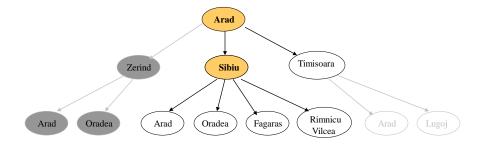


CS 1571 Intro to Al

M. Hauskrecht

Iterative deepening

Cutoff depth = 2



CS 1571 Intro to Al

Properties of IDA

Completeness: ?
Optimality: ?
Time complexity: ?
Memory (space) complexity: ?

CS 1571 Intro to Al

M. Hauskrecht

Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists. (the same as BFS when limit is always increased by 1)
- **Optimality: Yes**, for the shortest path. (the same as BFS)
- Time complexity:

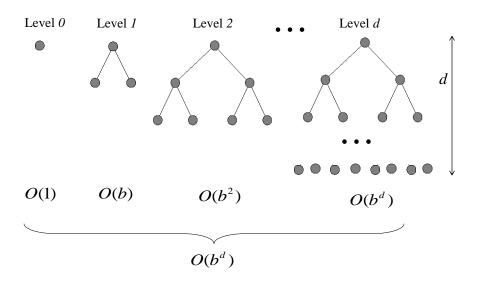
?

Memory (space) complexity:

?

CS 1571 Intro to Al

IDA – time complexity



CS 1571 Intro to Al

M. Hauskrecht

Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists. (the same as BFS)
- Optimality: Yes, for the shortest path. (the same as BFS)
- Time complexity:

 $O(1) + O(b^1) + O(b^2) + ... + O(b^d) = O(b^d)$

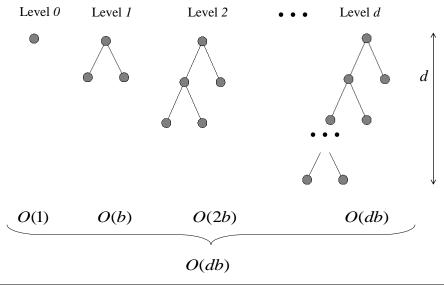
exponential in the depth of the solution d worse than BFS, but asymptotically the same

• Memory (space) complexity:

?

CS 1571 Intro to Al

IDA – memory complexity



CS 1571 Intro to Al

M. Hauskrecht

Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists. (the same as BFS)
- Optimality: Yes, for the shortest path. (the same as BFS)
- Time complexity:

$$O(1) + O(b^1) + O(b^2) + ... + O(b^d) = O(b^d)$$

exponential in the depth of the solution d

worse than BFS, but asymptotically the same

• Memory (space) complexity:

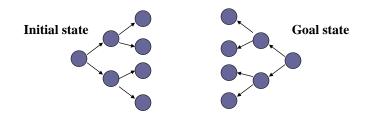
O(db)

much better than BFS

CS 1571 Intro to Al

Bi-directional search

- In some search problems we want to find the path from the initial state to the **unique goal state** (e.g. traveler problem)
- Bi-directional search idea:



- Search both from the initial state and the goal state;
- Use inverse operators for the goal-initiated search.

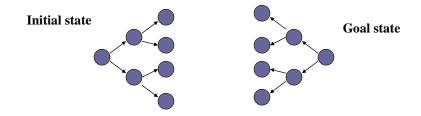
CS 1571 Intro to Al

M. Hauskrecht

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.

• ?

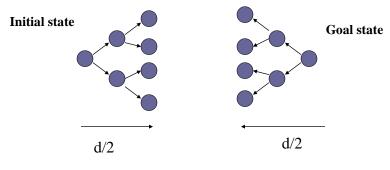


CS 1571 Intro to Al

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.

• Cut the depth of the search space by half



 $O(b^{d/2})$ Time and memory complexity

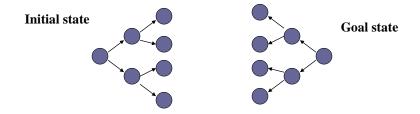
CS 1571 Intro to Al

M. Hauskrecht

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS

• It cuts the depth of the search tree by half.



CS 1571 Intro to Al

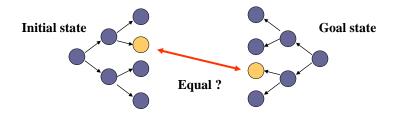
Bi-directional search

Why bidirectional search? Assume BFS.

• It cuts the depth of the search tree by half.

What is necessary?

• Merge the solutions.



• How?

CS 1571 Intro to Al

M. Hauskrecht

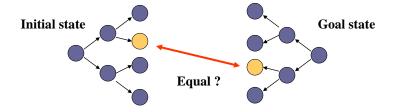
Bi-directional search

Why bidirectional search? Assume BFS.

• It cuts the depth of the search tree by half.

What is necessary?

• Merge the solutions.

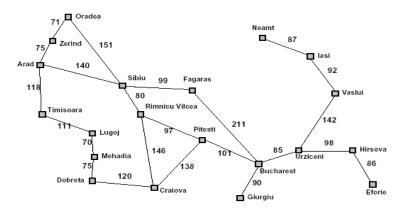


• How? The hash structure remembers the side of the tree the state was expanded first time. If the same state is reached from other side we have a solution.

CS 1571 Intro to Al

Minimum cost path search

Traveler example with distances [km]



Optimal path: the shortest distance path from Arad to Bucharest

CS 1571 Intro to Al

M. Hauskrecht

Searching for the minimum cost path

- **General minimum cost path-search problem:**
 - adds weights or costs to operators (links)

"Intelligent" expansion of the search tree should be driven by the cost of the current (partially) built path

Path cost function g(n); path cost from the initial state to n **Search strategy:**

- Expand the leaf node with the minimum g(n) first.
 - When operator costs are all equal to 1 it is equivalent to BFS
- The basic algorithm for finding the minimum cost path:
 - Dijkstra's shortest path
- In AI, the strategy goes under the name
 - **Uniform cost search**

19

CS 1571 Intro to Al

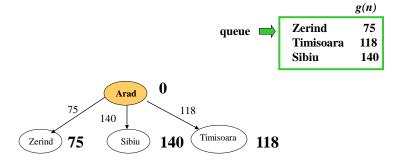
Uniform cost search

- Expand the node with the minimum path cost first
- Implementation: a priority queue

CS 1571 Intro to Al

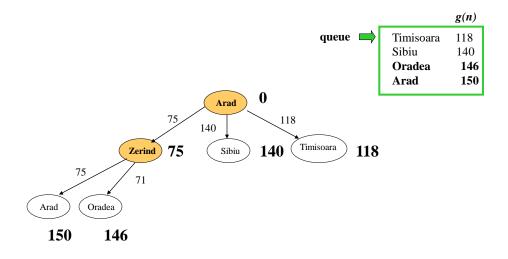
M. Hauskrecht

Uniform cost search



CS 1571 Intro to Al

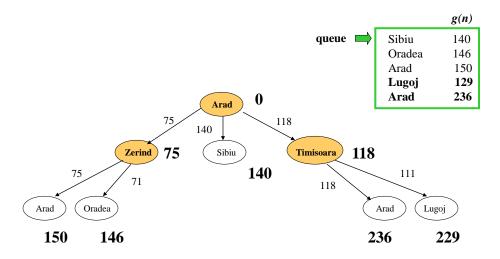
Uniform cost search



CS 1571 Intro to Al

M. Hauskrecht

Uniform cost search



CS 1571 Intro to Al

Properties of the uniform cost search

- Completeness: ?
- Optimality: ?
- Time complexity:

?

• Memory (space) complexity:

?

CS 1571 Intro to Al

M. Hauskrecht

Properties of the uniform cost search

• Completeness: Yes, assuming that operator costs are nonnegative (the cost of path never decreases)

 $g(n) \le g(\operatorname{successor}(n))$

- Optimality: Yes. Returns the least-cost path.
- Time complexity:
 number of nodes with the cost g(n) smaller than the optimal cost
- Memory (space) complexity:
 number of nodes with the cost g(n) smaller than the optimal cost

CS 1571 Intro to Al

Elimination of state repeats

Idea:

 A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:

• If the state has already been expanded, is there a shorter path to that node?

CS 1571 Intro to Al

M. Hauskrecht

Elimination of state repeats

Idea:

 A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:

- If the state was already expanded, is there a a shorter path to that node?
- No!

Implementation:

• Marking with the hash table

CS 1571 Intro to Al