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Linearly separable classes

There is a hyperplane that separates training instances with no
error

Hyperplane:
W' X+w, =0
o
Class (+1) " ®
W' X+w, >0 " °
Class (-1) .

W' X+w, <0
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Logistic regression

« Separating hyperplane:  W'x+w, =0

y >0.5?

» We can use gradient methods or Newton Rhapson for
sigmoidal switching functions and learn the weights

+ Recall that we learn the linear decision boundary
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Solving via LP

Linear program solution:

Finds weights that satisfy
the following constraints:

WX, +w, =0 For all i, such that Yy; =+1
WX +W, <0 Foralli, suchthat y; =-1
Together: Y (WX, +w,) =0

Property: if there is a hyperplane separating the examples, the
linear program finds the solution
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Optimal separating hyperplane

« There are multiple hyperplanes that separate the data points
— Which one to choose?
« Maximum margin choice: maximizes distance d, +d_

— where d_ is the shortest distance of a positive example
from the hyperplane (similarly d_ for negative examples)

Margin distance
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Maximum margin hyperplane

 For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

« These are called support vectors
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Finding maximum margin hyperplanes

« Assume that examples in the training set are (X;,Y;) such
that vy, e{+1,-1}

» Assume that all data satisfy:

w'x, +w,>1  for y, =+1

WX, +W, <-1 for yi=-1
» The inequalities can be combined as:

y,(W'x, +w,)—-1>0 forall i
 Equalities define two hyperplanes:

WX +w, =1 WX, +W, =-1
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Finding the maximum margin hyperplane

 Distance of a point x with label 1 from the hyperplane:
d(x) = (W' x+w,)/|w] ,

W - normal to the hyperplane  |..| , - Euclidean norm

Distance of a point x’

with label -1:
® d(X") = —(W"X+w) /|w] ,
®
o Distance of a point x

with label y:

P, X Y) = Y(WTX+W0)/”W”L2
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Finding the maximum margin hyperplane

- Geometrical margin: p,,,, (X, ¥) = y(W'x+w,)/|w]|_,
For points satisfying: y,(W'X; +W,)—1=0

The distance is i
Iwl,,

Width of the margin:

°
= e o ¢ d, +d = 2
| o o0 e ”W”LZ
m BN o °®
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Maximum margin hyperplane

.. 2
« We want to maximized, +d_=——
Iwll,,

« We do it by minimizing
| 2 /2=w"w/2
W, W, -variables
— But we also need to enforce the constraints on points:

[yi (W x+we) —1]> 0
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Maximum margin hyperplane

+ Solution: Incorporate constraints into the optimization
» Optimization problem (Lagrangian)

J(W,W,,x) = ||w||2 /Z—Zn:ai [yi (WTX+WO)—1]
i=1
o; 20 - Lagrange multipliers

» Minimize with respect to w, w, (primal variables)
« Maximize with respect to @  (dual variables)

Lagrange multipliers enforce the satisfaction of constraints

If [yi(WTx+w0)—1]>O — a; >0
Else => « >0  Activeconstraint
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Max margin hyperplane solution

 Set derivatives to 0 (Karu%h-Kuhn-Tucker (KKT) conditions)
Vo J (W, Wy, @) =W = a,y;x; =0

i=1

oI (W, wW,,x) 4
— =2 =0
oy %

» Now we need to solve for Lagrange parameters (Wolfe dual)

J(x) = Zai _% zaiaj YiY; (xiij) <=mm maximize
i=1

i, j=1
Subject to constraints

a, >0 foralli, and > oy, =0
i=1

+ Quadratic optimization problem: solution ¢, for all i
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Maximum hyperplane solution

» The resulting parameter vector W can be expressed as:

n
W = Zo}i YiX; a@; is the solution of the dual problem
i=1

+ The parameter w, is obtained through Karush-Kuhn-Tucker
conditions

o [Yi (Wx; +W, ) _1] =0

Solution properties

* ¢, =0 forall points that are not on the margin

« W jsalinear combination of support vectors only
» The decision boundary:

WIX+Wo = D&Y, (X; X)+W, =0
ieSV
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Support vector machines

» The decision boundary:
WIX+Wo = D&Y, (X X)+ W,
* The decision: ISV

y= sign{Zdi Yi (XiTX) +Wo}

ieSV

w
°
= o o ¢
u s o ®
m N o °
]
]
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Support vector machines

» The decision boundary:

WIX+W, = D & yi+w0
ieSV

» The decision:

¥ =sign [Z&i y + WO}
. (”) ieSV

« Decision on a new X requires to compute the inner product
between the examples (X, )

Similarly, the optimization depends on  (x;x )

n 1 n
@)= Sy ()
i—1 ij=1
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Extension to a linearly non-separable case

 Idea: Allow some flexibility on crossing the separating
hyperplane
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Extension to the linearly non-separable case

* Relax constraints with variables £ >0
WX, +W, >1-¢&  for y, =+1
WX, +W, <—1+¢& for y, =-1

« Erroroceurs if & =1, D & isthe upper bound on the
number of errors =

* Introduce a penalty for the errors
n
2
minimize W[ /2+C> &
i=1
Subject to constraints

C —set by a user, larger C leads to a larger penalty for an error
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Extension to linearly non-separable case

 Lagrange multiplier form (primal problem)

J (W' Wma) = ||W||2 / 2+CZ§i _Zai [yi (WTX"'WO) _1+§i ]_Z/uié:i
i=1 i=1 i=1
+ Dual form after w,w, are expressed ( & s cancel out)

n 1 n
J(x) = Zai ) zaiajyiyj(XiTXj)
i1 i

i,j=1
Subjectto: 0<e¢; <C foralli,and > a;y; =0
n i=1
Solution: W =>"&yX
i=1
The difference from the separable case: 0<g <C

The parameter W, is obtained through KKT conditions
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Support vector machines

» The decision boundary:

WIX+W, = D & yi+w0
ieSV

» The decision:

¥ =sign [Z&i y + WO}
. (”) ieSV

« Decision on a new X requires to compute the inner product
between the examples (X, )

» Similarly, the optimization depends on  (x,"x )

n 1 n
@) =T Sy ()
i—1 ij=1
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Nonlinear case

The linear case requires to compute (xiTx)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X — @(X)
It is possible to use SVM formalism on feature vectors

_ o) (X")
Kernel function

K(XX') =@(X)" ¢(X)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!
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Kernel function example

Assume x =[x, x,]" and a feature mapping that maps the input
into a quadratic feature set

X — @(x) =[x, X2,v/2%,%,, /2%, /2%, AT
Kernel function for the feature space:

K (X', X) = o(X)" ¢(X)
= XZX'Z XX 42X X, X', X', +2X X' +2X, X', +1
= (X X, +X, X', +1)?
= (1+(x"x"))?
The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Kernel function example

= Linear separator
., in the feature space
|
Non-linear separator
in the input space
]
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Kernel functions

» Linear kernel

K(X,X')=x"X'
* Polynomial kernel
K(x,X') = [1+ xTx'] k
» Radial basis kernel

K(x,X') = exp [—%”x—x'”z}
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Kernels

The dot product X'X s a distance measure
Kernels can be seen as distance measures

— Or conversely express degree of similarity
Design criteria - we want kernels to be

— valid — Satisfy Mercer condition of positive semi-
definiteness

— good — embody the “true similarity” between objects
— appropriate — generalize well
— efficient — the computation of k(x,x”) is feasible
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Kernels

SVM researchers have proposed kernels for comparison of
variety of objects:

— Strings
— Trees

— Graphs
Cool thing:

— SVM algorithm can be now applied to classify a variety of
objects
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