CS 1571 Artificial Intelligence Lecture 28

Support vector machines

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Outline

Outline:

- · Algorithms for linear decision boundary
- Support vector machines
- Maximum margin hyperplane.
- Support vectors.
- Support vector machines.
- Extensions to the non-separable case.
- · Kernel functions.

Linearly separable classes

There is a **hyperplane** that separates training instances with no error

CS 2750 Machine Learning

Logistic regression

• Separating hyperplane: $\mathbf{w}^T \mathbf{x} + w_0 = 0$

- We can use **gradient methods** or Newton Rhapson for sigmoidal switching functions and learn the weights
- Recall that we learn the linear decision boundary

Solving via LP

Linear program solution:

Finds weights that satisfy the following constraints:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 0$$

For all i, such that
$$y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$
 For all i, such that $y_i = -1$

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 0$$

Property: if there is a hyperplane separating the examples, the linear program finds the solution

CS 2750 Machine Learning

Optimal separating hyperplane

- There are multiple **hyperplanes** that separate the data points
 - Which one to choose?
- Maximum margin choice: maximizes distance $d_+ + d_-$
 - where d_{\perp} is the shortest distance of a positive example from the hyperplane (similarly $d_{\scriptscriptstyle -}$ for negative examples)

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called **support vectors**

CS 2750 Machine Learning

Finding maximum margin hyperplanes

- **Assume** that examples in the training set are (\mathbf{x}_i, y_i) such that $y_i \in \{+1,-1\}$
- **Assume** that all data satisfy:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1 \qquad \text{for} \qquad y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 \qquad \text{for} \qquad \qquad y_i = -1$$

• The inequalities can be combined as:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 \ge 0$$
 for all i

• Equalities define two hyperplanes:

$$\mathbf{w}^T \mathbf{x}_i + w_0 = 1 \qquad \qquad \mathbf{w}^T \mathbf{x}_i + w_0 = -1$$

Finding the maximum margin hyperplane

• Distance of a point x with label 1 from the hyperplane:

$$d(x) = (\mathbf{w}^T \mathbf{x} + w_0) / \|\mathbf{w}\|_{L2}$$

$$\mathbf{w}$$
 - normal to the hyperplane $\left\| .. \right\|_{L^2}$ - Euclidean norm

Distance of a point x' with label -1:

$$d(x') = -(\mathbf{w}^T \mathbf{x}' + w_0) / \|\mathbf{w}\|_{L^2}$$

Distance of a point x with label y:

$$\rho_{\mathbf{w},w_0}(\mathbf{x},y) = y(\mathbf{w}^T \mathbf{x} + w_0) / \|\mathbf{w}\|_{L2}$$

CS 2750 Machine Learning

Finding the maximum margin hyperplane

• Geometrical margin: $\rho_{\mathbf{w},w_0}(\mathbf{x},y) = y(\mathbf{w}^T\mathbf{x} + w_0)/\|\mathbf{w}\|_{L^2}$

For points satisfying: $y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 = 0$

The distance is $\frac{1}{\|\mathbf{w}\|_{L^2}}$

Width of the margin:

$$d_+ + d_- = \frac{2}{\left\| \mathbf{w} \right\|_{L^2}}$$

Maximum margin hyperplane

- We want to maximize $d_+ + d_- = \frac{2}{\|\mathbf{w}\|_{L^2}}$
- We do it by **minimizing**

$$\|\mathbf{w}\|_{L^2}^2/2 = \mathbf{w}^T \mathbf{w}/2$$

 \mathbf{w}, w_0 - variables

- But we also need to enforce the constraints on points:

$$\left[y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1 \right] \ge 0$$

CS 2750 Machine Learning

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^n \alpha_i \left[y_i (\mathbf{w}^T \mathbf{x} + w_0) - 1 \right]$$
$$\alpha_i \ge 0 \quad - \text{Lagrange multipliers}$$

- **Minimize** with respect to \mathbf{w}, w_0 (primal variables)
- Maximize with respect to α (dual variables)
 Lagrange multipliers enforce the satisfaction of constraints

If
$$[y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1] > 0 \implies \alpha_i \to 0$$

Else $\implies \alpha_i > 0$ Active constraint

Max margin hyperplane solution

• Set derivatives to 0 (Karush-Kuhn-Tucker (KKT) conditions)

$$\nabla_{\mathbf{w}} J(\mathbf{w}, w_0, \alpha) = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = \overline{0}$$

$$\frac{\partial J(\mathbf{w}, w_0, \alpha)}{\partial w_0} = -\sum_{i=1}^n \alpha_i y_i = 0$$

• Now we need to solve for Lagrange parameters (Wolfe dual)

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$
 maximize

Subject to constraints

$$\alpha_i \ge 0$$
 for all i , and $\sum_{i=1}^n \alpha_i y_i = 0$

• Quadratic optimization problem: solution $\hat{\alpha}_i$ for all i

CS 2750 Machine Learning

Maximum hyperplane solution

• The resulting parameter vector $\hat{\mathbf{w}}$ can be expressed as:

$$\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_{i} y_{i} \mathbf{x}_{i}$$
 $\hat{\alpha}_{i}$ is the solution of the dual problem

• The parameter w_0 is obtained through Karush-Kuhn-Tucker conditions $\hat{\alpha}_i [y_i(\hat{\mathbf{w}}\mathbf{x}_i + w_0) - 1] = 0$

Solution properties

- $\hat{\alpha}_i = 0$ for all points that are not on the margin
- $\hat{\mathbf{w}}$ is a linear combination of support vectors only
- The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0 = 0$$

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

The decision:

$$\hat{y} = \operatorname{sign}\left[\sum_{i \in SV} \hat{\alpha}_i y_i(\mathbf{x}_i^T \mathbf{x}) + w_0\right]$$

CS 2750 Machine Learning

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

• The decision:

$$\hat{y} = \operatorname{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y \left(\mathbf{x}_i^T \mathbf{x} \right) + w_0 \right]$$

- · (!!):
- Decision on a new \mathbf{x} requires to compute the inner product between the examples $(\mathbf{x}_i^T \mathbf{x})$
- Similarly, the optimization depends on $(\mathbf{x}_i^T \mathbf{x}_i)$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Extension to a linearly non-separable case

• **Idea:** Allow some flexibility on crossing the separating hyperplane

CS 2750 Machine Learning

Extension to the linearly non-separable case

• Relax constraints with variables $\xi_i \ge 0$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 1 - \xi_i \quad \text{ for } \qquad y_i = +1$$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le -1 + \xi_i \quad \text{for} \qquad \qquad y_i = -1$$

- Error occurs if $\xi_i \ge 1$, $\sum_{i=1}^n \xi_i$ is the upper bound on the number of errors
- Introduce a penalty for the errors

minimize
$$\|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^n \xi_i$$

Subject to constraints

C – set by a user, larger C leads to a larger penalty for an error

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left[y_i (\mathbf{w}^T \mathbf{x} + w_0) - 1 + \xi_i \right] - \sum_{i=1}^n \mu_i \xi_i$$

• Dual form after \mathbf{w}, w_0 are expressed (ξ_i s cancel out)

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Subject to: $0 \le \alpha_i \le C$ for all i, and $\sum_{i=1}^n \alpha_i y_i = 0$

Solution: $\hat{\mathbf{w}} = \sum_{i=1}^{n} \hat{\alpha}_i y_i \mathbf{x}_i$

The difference from the separable case: $0 \le \alpha_i \le C$

The parameter w_0 is obtained through KKT conditions

CS 2750 Machine Learning

Support vector machines

• The decision boundary:

$$\hat{\mathbf{w}}^T \mathbf{x} + w_0 = \sum_{i \in SV} \hat{\alpha}_i y_i (\mathbf{x}_i^T \mathbf{x}) + w_0$$

• The decision:

$$\hat{y} = \operatorname{sign} \left[\sum_{i \in SV} \hat{\alpha}_i y \left(\mathbf{x}_i^T \mathbf{x} \right) + w_0 \right]$$

- · (!!):
- Decision on a new \mathbf{x} requires to compute the inner product between the examples $(\mathbf{x}_i^T \mathbf{x})$
- Similarly, the optimization depends on $(\mathbf{x}_i^T \mathbf{x}_i)$

$$J(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Nonlinear case

- The linear case requires to compute $(\mathbf{x}_i^T \mathbf{x})$
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$\mathbf{x} \to \mathbf{\varphi}(\mathbf{x})$$

• It is possible to use SVM formalism on feature vectors

$$\varphi(\mathbf{x})^T \varphi(\mathbf{x}')$$

Kernel function

$$K(\mathbf{x},\mathbf{x}') = \mathbf{\varphi}(\mathbf{x})^T \mathbf{\varphi}(\mathbf{x}')$$

• Crucial idea: If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

CS 2750 Machine Learning

Kernel function example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

$$K(\mathbf{x',x}) = \mathbf{\phi}(\mathbf{x'})^{T} \mathbf{\phi}(\mathbf{x})$$

$$= x_{1}^{2} x_{1}^{2} + x_{2}^{2} x_{2}^{2} + 2x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime} + 2x_{1} x_{1}^{\prime} + 2x_{2} x_{2}^{\prime} + 1$$

$$= (x_{1} x_{1}^{\prime} + x_{2} x_{2}^{\prime} + 1)^{2}$$

$$= (1 + (\mathbf{x}^{T} \mathbf{x'}))^{2}$$

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernel function example

CS 2750 Machine Learning

Kernel functions

Linear kernel

$$K(\mathbf{x},\mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$

• Polynomial kernel

$$K(\mathbf{x}, \mathbf{x}') = \left[1 + \mathbf{x}^T \mathbf{x}'\right]^k$$

· Radial basis kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{1}{2}\|\mathbf{x} - \mathbf{x}'\|^2\right]$$

Kernels

- The dot product $\mathbf{x}^T \mathbf{x}$ is a **distance measure**
- Kernels can be seen as distance measures
 - Or conversely express degree of similarity
- Design criteria we want kernels to be
 - valid Satisfy Mercer condition of positive semidefiniteness
 - good embody the "true similarity" between objects
 - appropriate generalize well
 - efficient the computation of k(x,x') is feasible

CS 2750 Machine Learning

Kernels

- SVM researchers have proposed kernels for comparison of variety of objects:
 - Strings
 - Trees
 - Graphs
- Cool thing:
 - SVM algorithm can be now applied to classify a variety of objects