Logistic regression

Supervised learning

Data: \(D = \{D_1, D_2, ..., D_n\} \) a set of \(n \) examples

\(D_i = \langle x_i, y_i \rangle \)

\(x_i = (x_{i,1}, x_{i,2}, ..., x_{i,d}) \) is an input vector of size \(d \)

\(y_i \) is the desired output (given by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)

s.t. \(y_i \approx f(x_i) \) for all \(i = 1, ..., n \)

- **Regression**: \(Y \) is continuous

 Example: earnings, product orders \(\rightarrow \) company stock price

- **Classification**: \(Y \) is discrete

 Example: handwritten digit in binary form \(\rightarrow \) digit label
Linear regression: review

- **Function** \(f : X \rightarrow Y \) is a linear combination of input components

\[
 f(x) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d = w_0 + \sum_{j=1}^{d} w_j x_j
\]

- \(w_0, w_1, \ldots, w_k \) - parameters (weights)

Bias term \(\rightarrow 1 \)

Input vector \(\{x_1, x_2, \ldots, x_d\} \)

\(f(x, w) \)

\[f(x) = \sum_{j=1}^{d} w_j x_j \]

Linear regression: review

- **Data:** \(D_i = \langle x_i, y_i \rangle \)
- **Function:** \(x_i \rightarrow \hat{f}(x_i) \)
- We would like to have \(y_i \approx \hat{f}(x_i) \) for all \(i = 1, \ldots, n \)

- **Error function** measures how much our predictions deviate from the desired answers

\[
 J_n = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2
\]

- **Learning:**
 We want to find the weights minimizing the error!
Solving linear regression: review

• The optimal set of weights satisfies:
 \[\nabla_w (J_n (w)) = -\frac{2}{n} \sum_{i=1}^{n} (y_i - w^T x_i)x_i = 0 \]

Leads to a **system of linear equations (SLE)** with \(d+1 \) unknowns of the form

\[\mathbf{A} \mathbf{w} = \mathbf{b} \]

\[w_0 \sum_{i=1}^{n} x_{i,0}x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1}x_{i,j} + \ldots + w_j \sum_{i=1}^{n} x_{i,j}x_{i,j} + \ldots + w_d \sum_{i=1}^{n} x_{i,d}x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j} \]

Solutions to SLE:
• e.g. matrix inversion (if the matrix is singular)

\[\mathbf{w} = \mathbf{A}^{-1} \mathbf{b} \]

Linear regression. Example

• 1 dimensional input \(\mathbf{x} = (x_1) \)
Linear regression. Example.

- 2 dimensional input \(x = (x_1, x_2) \)

![Graph showing linear regression example](image)

Gradient descent solution

- There are other ways to solve the weight optimization problem in the linear regression model

\[
J_n = Error(w) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, w))^2
\]

- A simple technique:
 - **Gradient descent**

 Idea:
 - Adjust weights in the direction that improves the Error
 - The gradient tells us what is the right direction

\[
w \leftarrow w - \alpha \nabla_w Error_i(w)
\]

\(\alpha > 0 \) - a learning rate (scales the gradient changes)
Gradient descent method

- Descend using the gradient information

$$\nabla_w \text{Error}(w) \big|_{w^*}$$

Direction of the descent

- Change the value of w according to the gradient

$$w \leftarrow w - \alpha \nabla_w \text{Error}_f(w)$$

New value of the parameter

$$w_j \leftarrow w_j^* - \alpha \frac{\partial}{\partial w_j} \text{Error}(w) \big|_{w^*} \quad \text{For all } j$$

$\alpha > 0$ - a learning rate (scales the gradient changes)
Gradient descent method

- Iteratively converge to the optimum of the Error function

\[
\text{Error}(\mathbf{w})
\]

\[
\begin{align*}
\mathbf{w}^{(0)} & \to \mathbf{w}^{(1)} & \to \mathbf{w}^{(2)} & \to \mathbf{w}^{(3)} \\
\end{align*}
\]

Online regression algorithm

- **Batch learning**: error function defined for the whole dataset \(D \)
 \[
 J_n = \text{Error}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i, \mathbf{w}))^2
 \]

- **On-line learning**: Error function for individual datapoints.
 - Useful when we learn on datastreams
 \[
 D_i = <x_i, y_i>
 \]
 \[
 J_{\text{online}} = \text{Error}_i(\mathbf{w}) = \frac{1}{2} (y_i - f(x_i, \mathbf{w}))^2
 \]

- Change regression weights after every example according to the gradient of the online error:
 \[
 \mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla \text{Error}_i(\mathbf{w})
 \]
Gradient for on-line learning

Linear model \(f(x) = w^T x \)

On-line error \(J_{\text{online}} = \text{Error}_i(w) = \frac{1}{2}(y_i - f(x_i, w))^2 \)

On-line algorithm: sequence of online updates

(i)-th update for the linear model: \(D_i = \langle x_i, y_i \rangle \)

Vector form:
\[
w^{(i)} \leftarrow w^{(i-1)} - \alpha(i) \nabla_w \text{Error}_i(w) \big|_{w^{(i-1)}} = w^{(i-1)} + \alpha(i) (y_i - f(x_i, w^{(i-1)}))x_i
\]

j-th weight:
\[
w_j^{(i)} \leftarrow w_j^{(i-1)} - \alpha(i) \frac{\partial \text{Error}_i(w)}{\partial w_j} \big|_{w^{(i-1)}} = w_j^{(i-1)} + \alpha(i) (y_i - f(x_i, w^{(i-1)}))x_{i,j}
\]

Annealed learning rate: \(\alpha(i) \approx \frac{1}{i} \)
- Gradually rescales changes in weights

Online regression algorithm

Online-linear-regression \((D, \text{number of iterations})\)

Initialize weights \(w = (w_0, w_1, w_2 \ldots w_d) \)

for \(i=1:1 \): **number of iterations**

do

- **select** a data point \(D_i = (x_i, y_i) \) from \(D \)
- **set** \(\alpha = 1/i \)

update weight vector
\[
w \leftarrow w + \alpha(y_i - f(x_i, w))x_i
\]

end for

return weights \(w \)

Advantages: very easy to implement, continuous data streams
On-line learning. Example

Supervised learning

Data: \(D = \{ d_1, d_2, \ldots, d_n \} \) a set of \(n \) examples

\[d_i = \langle x_i, y_i \rangle \]

\(x_i \) is input vector, and \(y \) is desired output (given by a teacher)

Objective: learn the mapping \(f : X \rightarrow Y \)

s.t. \(y_i \approx f(x_i) \) for all \(i = 1, \ldots, n \)

Two types of problems:

- **Regression**: \(Y \) is continuous
 - Example: earnings, product orders \(\rightarrow \) company stock price
- **Classification**: \(Y \) is discrete
 - Example: temperature, heart rate \(\rightarrow \) disease

Today: **binary classification problems**
Binary classification

- **Two classes** \(Y = \{0,1\} \)
- Our goal is to learn to classify correctly two types of examples
 - Class 0 – labeled as 0,
 - Class 1 – labeled as 1
- We would like to learn \(f : X \rightarrow \{0,1\} \)
- **Zero-one error (loss) function**
 \[
 Error_i(x_i, y_i) = \begin{cases}
 1 & f(x_i, w) \neq y_i \\
 0 & f(x_i, w) = y_i
 \end{cases}
 \]
- Error we would like to minimize: \(E_{(x,y)}(Error_i(x,y)) \)
- **First step:** we need to devise a model of the function

Discriminant functions

- One convenient way to represent classifiers is through
 - **Discriminant functions**
- Works for binary and multi-way classification

- **Idea:**
 - For every class \(i = 0,1, \ldots, k \) define a function \(g_i(x) \)
 - mapping \(X \rightarrow \mathbb{R} \)
 - When the decision on input \(x \) should be made choose the
 class with the highest value of \(g_i(x) \)

- So what happens with the input space? Assume a binary case.
Discriminant functions

- Define decision boundary.

\[g_1(x) \geq g_0(x) \]

\[g_1(x) = g_0(x) \]

\[g_1(x) \leq g_0(x) \]
Logistic regression model

- Defines a linear decision boundary
- Discriminant functions:
 \[g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x) \]
- where \(g(z) = \frac{1}{1 + e^{-z}} \) - is a logistic function

\[f(x, w) = g_1(w^T x) = g(w^T x) \]

\[z = \sum \begin{cases} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_d \end{cases} w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d \]

Logistic function

function

\[g(z) = \frac{1}{1 + e^{-z}} \]

- also referred to as a sigmoid function
- Replaces the threshold function with smooth switching
- takes a real number and outputs the number in the interval [0,1]
Logistic regression model

- **Discriminant functions:**
 \[
g_1(x) = g(w^T x) \quad g_0(x) = 1 - g(w^T x)
\]
- **Where** \(g(z) = 1/(1 + e^{-z}) \) - is a logistic function
- **Values of discriminant functions vary in [0,1]**
 - **Probabilistic interpretation**
 \[
f(x, w) = p(y = 1 \mid w, x) = g_1(x) = g(w^T x)
\]

![Diagram of Logistic Regression](image)

Logistic regression

- Instead of learning the mapping to discrete values 0,1
 \[
f : X \to \{0,1\}
\]
- we learn a **probabilistic function**
 \[
f : X \to [0,1]
\]
 - where \(f \) describes the probability of class 1 given \(x \)
 \[
f(x, w) = p(y = 1 \mid x, w)
\]
 Note that: \(p(y = 0 \mid x, w) = 1 - p(y = 1 \mid x, w) \)
- **Transformation to discrete class values:**

 If \(p(y = 1 \mid x) \geq 1/2 \) then choose 1
 Else choose 0
Linear decision boundary

- Logistic regression model defines a linear decision boundary
- Why?
- **Answer:** Compare two discriminant functions.
- Decision boundary: \(g_1(x) = g_0(x) \)
- For the boundary it must hold:
 \[
 \log \frac{g_0(x)}{g_1(x)} = \log \frac{1 - g(w^T x)}{g(w^T x)} = 0
 \]
 \[
 \log \frac{g_0(x)}{g_1(x)} = \log \frac{\exp(-w^T x)}{1 + \exp(-w^T x)} = \log \exp(-w^T x) = w^T x = 0
 \]

Logistic regression model. Decision boundary

- **LR defines a linear decision boundary**
 Example: 2 classes (blue and red points)
Logistic regression: parameter learning.

Likelihood of outputs
• Let
 \[D_i = \langle x_i, y_i \rangle \quad \mu_i = p(y_i = 1 \mid x_i, w) = g(z_i) = g(w^T x) \]
• Then
 \[L(D, w) = \prod_{i=1}^{n} P(y = y_i \mid x_i, w) = \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1-y_i} \]
• Find weights \(w \) that maximize the likelihood of outputs
 – Apply the log-likelihood trick The optimal weights are the same for both the likelihood and the log-likelihood
 \[l(D, w) = \log \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1-y_i} = \sum_{i=1}^{n} \log \mu_i^{y_i} (1 - \mu_i)^{1-y_i} = \]
 \[= \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]

Logistic regression: parameter learning

• Log likelihood
 \[l(D, w) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \]
• Derivatives of the loglikelihood
 \[-\frac{\partial}{\partial w_j} l(D, w) = \sum_{i=1}^{n} -x_{i,j} (y_i - g(z_i)) \]
 \[\nabla_w -l(D, w) = \sum_{i=1}^{n} -x_i (y_i - g(w^T x_i)) = \sum_{i=1}^{n} -x_i (y_i - f(w, x_i)) \]
• Gradient descent:
 \[w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [-l(D, w)] \bigg|_{w^{(k-1)}} \]
 \[= w^{(k-1)} + \alpha(k) \sum_{i=1}^{n} [y_i - f(w^{(k-1)}, x_i)] x_i \]
Logistic regression. Online gradient descent

- **On-line component of the loglikelihood**

 \(-J_{\text{online}}(D_i, \mathbf{w}) = y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i)\)

- **On-line learning update for weight \(w\)**

 \[w^{(k)} \leftarrow w^{(k-1)} - \alpha(k) \nabla_w [J_{\text{online}}(D_k, \mathbf{w})] |_{w^{(k-1)}}\]

- **ith update for the logistic regression** and \(D_k = \langle x_k, y_k \rangle\)

 \[w^{(i)} \leftarrow w^{(k-1)} + \alpha(k) [y_i - f(w^{(k-1)}, x_k)]x_k\]

Online logistic regression algorithm

Online-logistic-regression \((D, \text{number of iterations})\)

initialize weights \(\mathbf{w} = (w_0, w_1, w_2 \ldots w_d)\)

for \(i=1:1: \text{number of iterations}\)

 do select a data point \(D_i = \langle x_i, y_i \rangle\) from \(D\)

 set \(\alpha = 1/i\)

 update weights (in parallel)

 \[\mathbf{w} \leftarrow \mathbf{w} + \alpha(i) [y_i - f(\mathbf{w}, x_i)]x_i\]

end for

return weights \(\mathbf{w}\)
Online algorithm. Example.
Online algorithm. Example.

Derivation of the gradient

- **Log likelihood** \(l(D, \mathbf{w}) = \sum_{i=1}^{n} y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \)

- **Derivatives of the loglikelihood**
 \[
 \frac{\partial}{\partial w_j} l(D, \mathbf{w}) = \sum_{i=1}^{n} \frac{\partial}{\partial z_i} \left[y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right] \frac{\partial z_i}{\partial w_j}
 \]

 Derivative of a logistic function
 \[
 \frac{\partial}{\partial z_i} \left[y_i \log \mu_i + (1 - y_i) \log(1 - \mu_i) \right] = y_i \frac{1}{\mu_i} \frac{\partial g(z_i)}{\partial z_i} + (1 - y_i) \frac{1}{1 - \mu_i} \frac{\partial g(z_i)}{\partial z_i}
 \]
 \[
 = y_i (1 - g(z_i)) + (1 - y_i)(-g(z_i)) = y_i - g(z_i)
 \]

 \[
 \nabla_w l(D, \mathbf{w}) = \sum_{i=1}^{n} -\mathbf{x}_i (y_i - g(\mathbf{w}^T \mathbf{x}_i)) = \sum_{i=1}^{n} -\mathbf{x}_i (y_i - f(\mathbf{w}, \mathbf{x}_i))
 \]
Limitations of basic linear units

Linear regression
\[f(x) = w^T x \]

Logistic regression
\[f(x) = p(y=1|x, w) = g(w^T x) \]

- Function linear in inputs!!
- Linear decision boundary!!

Logistic regression. Decision boundary

Logistic regression model defines a linear decision boundary

- Example: 2 classes (blue and red points)
Linear decision boundary

- Example when logistic regression model is not optimal, but not that bad

When logistic regression fails?

- Example in which the logistic regression model fails
Limitations of logistic regression.

- parity function - no linear decision boundary

Extensions of simple linear units

- use feature (basis) functions to model nonlinearities

Linear regression
\[
f(x) = w_0 + \sum_{j=1}^{m} w_j \phi_j(x)
\]

Logistic regression
\[
f(x) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(x))
\]

\[\phi_j(x) \quad \text{an arbitrary function of } x\]

The same trick can be done also for the logistic regression
Extension of simple linear units

- **Example:** Fitting of a polynomial of degree \(m \)
 - Data points: pairs of \(<x, y> \)
 - Feature functions:
 \[
 \phi_i(x) = x^i
 \]
 - Function to learn:
 \[
 f(x, w) = w_0 + \sum_{i=1}^{m} w_i \phi_i(x) = w_0 + \sum_{i=1}^{m} w_i x^i
 \]
 - **On line update** for \(<x, y> \) pair
 \[
 w_0 = w_0 + \alpha(y - f(x, w))
 \]
 \[
 \vdots
 \]
 \[
 w_j = w_j + \alpha(y - f(x, w)) \phi_j(x)
 \]