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Learning example
• Problem: many possible functions                      exists for 

representing the mapping between x and y                      
• Which one to choose?  Many examples still unseen!

YXf →:
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Learning example
• Problem is easier when we make an assumption about the 

model, say,

• Restriction to a linear model is an example of the learning bias
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Learning example
• Choosing a parametric model or a set of models is not enough 

Still too many functions
– One for every pair of parameters a, b
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Fitting the data to the model
• We are interested in finding the best set of model parameters
Objective: Find the set of parameters that:
• reduce the misfit between what model suggests and what data 

say 
• Or, (in other words) that explain the data the best
Error function:

Measure of misfit between the data and the model
• Examples of error functions:

– Mean square error

– Misclassification error
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Fitting the data to the model
• Linear regression 

– Least squares fit with the linear model 
– minimizes
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Typical learning

Three basic steps:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

• Find the set of parameters optimizing the error function
– The model and parameters with the smallest error represent 

the best fit of the model to the data

But there are problems one must be careful about …
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Learning
Problem
• We fit the model based on past experience (past examples seen)
• But ultimately we are interested in learning the mapping that 

performs well on the whole population of examples
Training data: Data used to fit the parameters of the model
Training error:

True (generalization) error (over the whole unknown 
population):

Training error tries to approximate the true error !!!!
Does a good training error imply a good generalization error ?
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Overfitting

• Assume we have a set of 10 points and we consider 
polynomial functions as our possible models
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Overfitting

• Fitting a linear function with mean-squares error
• Error is nonzero
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Overfitting
• Linear vs. cubic polynomial
• Higher order polynomial leads to a better fit, smaller error 
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Overfitting

• Is it always good to minimize the error of the observed data?
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Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.
• Is it always good to minimize the training error?  
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Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.
• Is it always good to minimize the training error?  NO !!
• More important: How do we perform on the unseen data?
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Overfitting
• Situation when the training error is low and the generalization 

error is high. Causes of the phenomenon:
– Model with more degrees of freedom (more parameters)
– Small data size (as compared to the complexity of model)
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How to evaluate the learner’s performance?
• Generalization error is the true error for the population of 

examples we would like to optimize

• But it cannot be computed exactly
• Optimizing (mean) training error can lead to overfit, i.e.  

training error may not reflect properly the generalization error

• So how to test the generalization error? 
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• Generalization error is the true error for the population of 
examples we would like to optimize

• But it cannot be computed exactly
• Optimizing (mean) training error can lead to overfit, i.e.  

training error may not reflect properly the generalization error

• How to test the generalization error? 
• Use a separate data set with m data samples to test it
• (Mean) test error
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How to evaluate the learner’s performance?

CS 1571 Intro to AI

1. Take a dataset D and divide it into:
• Training data set 
• Testing data set 

2. Use the training set and your favorite ML algorithm to train 
the learner

3. Test (evaluate) the learner on the testing data set

• The results on the testing set can be used to compare different 
learners powered with different models and learning algorithms

Basic experimental setup to test the learner’s 
performance
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How to deal with overfitting?

How to make the learner avoid overfitting?
• Assure sufficient number of samples in the training set

– May not be possible
• Hold some data out of the training set = validation set

– Train (fit) on the training set (w/o data held out);
– Check for the generalization error on the validation set, 

choose the model based on the validation set error
(cross-validation techniques)

• Regularization (Occam’s Razor)
– Penalize for the model complexity (number of parameters)
– Explicit preference towards simple models

CS 1571 Intro to AI

Design of a learning system.

1. Data:
2. Model selection:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

3. Learning:
• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 
4. Application:
• Apply the learned model

– E.g. predict ys for new inputs x using learned
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Learning probability distributions

CS 1571 Intro to AI

Unsupervised learning

• Data:
a vector of attribute values

– e.g. the description of a patient
– no specific target attribute we want to predict (no output y)

• Objective:
– learn (describe) relations between attributes, examples

Types of problems:
• Clustering

Group together “similar” examples
• Density estimation

– Model probabilistically the population of examples
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD =
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

Objective: find parameters         that fit the data the best 

• What is the best set of parameters? 
– There are various criteria one can apply here.
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Parameter estimation. Basic criteria.

• Maximum likelihood (ML)

• Maximum a posteriori probability (MAP)

),|( ξΘDpmaximize
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Parameter estimation. Biased coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Objective:
We would like to estimate the probability of a head
from data
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Parameter estimation.  Example.

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What would be your choice of the probability of a head ?

θ
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Parameter estimation.  Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

This is the maximum likelihood estimate of the parameter
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Probability of an outcome
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: we know the probability
Probability of an outcome of a coin flip

– Combines the probability of a head and a tail
– So that        is going to pick its correct probability 
– Gives               for
– Gives               for
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of independent coin flips 
D = H H T H T H
(encoded as D= 110101)

What is the probability of observing the data sequence D:

– likelihood of the data
?)|( =θDP

θ
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:

• likelihood of the data
Can be rewritten using the Bernoulli distribution:
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Likelihood measure of the goodness of fit to 
the data.

Assume we do not know the value of the parameter
Our learning goal: 
• Find the parameter       that fits the data D the best? 

One solution to the “best”: Maximize the likelihood

Intuition:
• more likely are the data given the model, the better is the fit
Note:
• Instead an error function that measures how bad the fit is we 

have a measure that tells us how well the data fit :
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen
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Maximum likelihood (ML) estimate.
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What is the ML estimate of the probability of a head and a tail?

θ
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What is the ML estimate of the probability of head and tail ?
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Tail:


