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Machine Learning

* The field of machine learning studies the design of computer
programs (agents) capable of learning from past experience or
adapting to changes in the environment

» The need for building agents capable of learning is everywhere

— Predictions in medicine, text classification, speech
recognition, image/text retrieval, commercial software

* Machine learning is not only the deduction but induction of
rules from examples that facilitate prediction and decision
making
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Learning

Learning process:

Learner (a computer program) processes data D representing
past experiences and tries to either to develop an appropriate
response to future data, or describe in some meaningful way
the data seen

Example:

Learner sees a set of patient cases (patient records) with
corresponding diagnoses. It can either try:

— to predict the presence of a disease for future patients
— describe the dependencies between diseases, symptoms
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Types of learning

Supervised learning
— Learning mapping between inputs x and desired outputs y
— Teacher gives me y’s for the learning purposes
Unsupervised learning
— Learning relations between data components
— No specific outputs given by a teacher
Reinforcement learning
— Learning mapping between inputs x and desired outputs y

— Critic does not give me y’s but instead a signal
(reinforcement) of how good my answer was

Other types of learning:
— explanation-based learning, etc.
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Supervised learning

Data: D={d,,d,,...d,} asetofnexamples
d; =<X,y,>

X, is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping f : X =Y
st. ¥, = f(x;) foralli=1,.,n
Two types of problems:
* Regression: X discrete or continuous —»
Y is continuous
* Classification: X discrete or continuous —
Y is discrete
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Supervised learning examples

Regression: Y is continuous

Debt/equity
Earnings . company stock price

Future product orders

Classification: Y is discrete
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Handwritten digit (array of 0,1s)
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Unsupervised learning

* Data: D={d,.d,,.d}
d;=x; vector of values
No target value (output) y

* Objective:
— learn relations between samples, components of samples

Types of problems:
* Clustering

Group together “similar” examples, e.g. patient cases
* Density estimation

— Model probabilistically the population of samples
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Unsupervised learning example.

* Density estimation. We want to build the probability model of

a population from which we draw samples 4 =x.
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Unsupervised learning. Density estimation

* A probability density of a point in the two dimensional space

— Model used here: Mixture of Gaussians
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Reinforcement learning

« Wewanttolearn: f:X —>Y
* We see samples of x but not y

» Instead of y we get a feedback (reinforcement) from a critic
about how good our output was

input sample output
Learner

I reinforcement

Critic

» The goal is to select output that leads to the best reinforcement
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Learning

* Assume we see examples of pairs (x , y) and we want to learn
the mapping f : X —> Y to predict future ys for values of x

* We get the data what should we do?
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Learning bias

« Problem: many possible functions f : X — Y exists for
representing the mapping between x and y

*  Which one to choose? Many examples still unseen!
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Learning bias

» Problem is easier when we make an assumption about the
model, say, f(x)=ax+b+¢
£=N(0,0) -random (normally distributed) noise
 Restriction to a linear model is an example of the learning bias
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Learning bias
* Bias provides the learner with some basis for choosing among
possible representations of the function.
* Forms of bias: constraints, restrictions, model preferences
* Important: There is no learning without a bias!
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Learning bias

» Choosing a parametric model or a set of models is not enough
Still too many functions  f(x)=ax+b+¢ &=N(0,0)
— One for every pair of parameters a, b
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Fitting the data to the model

* We are interested in finding the best set of model parameters
Objective: Find the set of parameters that:

» reduce the misfit between what model suggests and what data
say

* Or, (in other words) that explain the data the best
Error function:

Measure of misfit between the data and the model
» Examples of error functions:

— Mean square error 1 )
_Z (yi - f(xz))
n o
— Misclassification error

Average # of misclassified cases y, # f(x,)
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Fitting the data to the model

* Linear regression
— Least squares fit with the linear model
— minimizes lZ(y,_f(x_)y
n i 1 1
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Typical learning

Three basic steps:

* Select a model or a set of models (with parameters)
Eg. y=ax+b+e &=N(0,0)

* Select the error function to be optimized

Eg %Z O, - f(x)?

* Find the set of parameters optimizing the error function

— The model and parameters with the smallest error represent
the best fit of the model to the data

But there are problems one must be careful about ...
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