KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.

Problem description:
- **Disease:** pneumonia
- **Patient symptoms (findings, lab tests):**
 - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.

Representation of a patient case:
- Statements that hold (are true) for the patient.
 E.g: Fever = True
 Cough = False
 WBC count = High

Diagnostic task: we want to decide whether the patient suffers from the pneumonia or not given the symptoms
Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis

Problem: disease/symptoms relations are not deterministic
- They are uncertain (or stochastic) and vary from patient to patient

Modeling the uncertainty.

Key challenges:
• How to represent the relations in the presence of uncertainty?
• How to manipulate such knowledge to make inferences?
 – Humans can reason with uncertainty.
Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

Facts (propositional statements)

- Are represented via **random variables** with two or more values

 Example: *Pneumonia* is a random variable

 values: *True* and *False*

- Each value can be achieved with **some probability**:

 \[P(\text{Pneumonia} = \text{True}) = 0.001 \]

 \[P(\text{WBC count} = \text{high}) = 0.005 \]

Probability theory

- Well-defined theory for representing and manipulating statements with uncertainty

- **Axioms of probability:**

 For any two propositions A, B.

 1. \(0 \leq P(A) \leq 1 \)
 2. \(P(\text{True}) = 1 \) and \(P(\text{False}) = 0 \)
 3. \(P(A \lor B) = P(A) + P(B) - P(A \land B) \)
Modeling uncertainty with probabilities

Probalistic extension of propositional logic
- **Propositions:**
 - statements about the world
 - Represented by the assignment of values to **random variables**
- **Random variables:**
 - **Boolean** $Pneumonia$ is either $True, False$
 - **Multi-valued** $Pain$ is one of $\{Nopain, Mild, Moderate, Severe\}$
 - **Continuous** $HeartRate$ is a value in $<0; 250>$

Probabilities

Unconditional probabilities (prior probabilities)
- $P(Pneumonia) = 0.001$ or $P(Pneumonia = True) = 0.001$
- $P(Pneumonia = False) = 0.999$
- $P(WBCcount = high) = 0.005$

Probability distribution
- Defines probabilities **for all possible value assignments to a random variable**
- Values are mutually exclusive

<table>
<thead>
<tr>
<th>Pneumonia</th>
<th>$P(Pneumonia)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.001</td>
</tr>
<tr>
<td>False</td>
<td>0.999</td>
</tr>
</tbody>
</table>
Probability distribution

Defines probability for **all possible value assignments**

Example 1:

\[
P(P_{\text{Pneumonia}} = \text{True}) = 0.001 \\
P(P_{\text{Pneumonia}} = \text{False}) = 0.999
\]

\[P(P_{\text{Pneumonia}} = \text{True}) + P(P_{\text{Pneumonia}} = \text{False}) = 1\]

Probabilities sum to 1 !!!

Example 2:

\[
P(WBC_{\text{count}} = \text{high}) = 0.005 \\
P(WBC_{\text{count}} = \text{normal}) = 0.993 \\
P(WBC_{\text{count}} = \text{high}) = 0.002
\]

Joint probability distribution

Joint probability distribution (for a set variables)

- Defines probabilities for **all possible assignments of values to variables in the set**

Example: variables \(P_{\text{Pneumonia}}\) and \(WBC_{\text{count}}\)

\[P(pneumonia, WBC_{\text{count}})\]

Is represented by \(2 \times 3\) matrix

\[
\begin{array}{c|ccc}
Pneumonia & \text{high} & \text{normal} & \text{low} \\
\hline
\text{True} & 0.0008 & 0.0001 & 0.0001 \\
\text{False} & 0.0042 & 0.9929 & 0.0019
\end{array}
\]
Joint probabilities

Marginalization

- reduces the dimension of the joint distribution
- Sums variables out

\[P(\text{pneumonia}, \text{WBCcount}) \] is a 2×3 matrix

<table>
<thead>
<tr>
<th>Pneumonia</th>
<th>high</th>
<th>normal</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>0.0008</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>False</td>
<td>0.0042</td>
<td>0.9929</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

\[P(\text{WBCcount}) \]

Marginalization (here summing of columns or rows)

\[P(\text{Pneumonia}) \]

<table>
<thead>
<tr>
<th>WBCcount</th>
<th>high</th>
<th>normal</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>0.005</td>
<td>0.993</td>
<td>0.002</td>
</tr>
<tr>
<td>normal</td>
<td>0.001</td>
<td>0.999</td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>0.001</td>
<td>0.999</td>
<td></td>
</tr>
</tbody>
</table>

Marginalization

- reduces the dimension of the joint distribution

\[P(X_1, X_2, \ldots, X_{n-1}) = \sum_{\{X_n\}} P(X_1, X_2, \ldots, X_{n-1}, X_n) \]

- We can continue doing this

\[P(X_2, \ldots, X_{n-1}) = \sum_{\{X_1\}} P(X_1, X_2, \ldots, X_{n-1}, X_n) \]

What is the maximal joint probability distribution?
- Full joint probability
Full joint distribution

- **the joint distribution for all variables in the problem**
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

Variables: *Pneumonia, Fever, Paleness, WBCcount, Cough*

Full joint defines the probability for all possible assignments of values to these variables

\[
P(\text{Pneumonia} = T, \text{WBCcount} = \text{High}, \text{Fever} = T, \text{Cough} = T, \text{Paleness} = T) \\
P(\text{Pneumonia} = T, \text{WBCcount} = \text{High}, \text{Fever} = T, \text{Cough} = T, \text{Paleness} = F) \\
P(\text{Pneumonia} = T, \text{WBCcount} = \text{High}, \text{Fever} = T, \text{Cough} = F, \text{Paleness} = T) \\
\ldots \text{ etc}
\]

- **How many probabilities are there?**

- Exponential in the number of variables
Full joint distribution

- Any joint probability for a subset of variables can be obtained via marginalization

\[P(Pneumonia, WBCcount, Fever) = \sum_{c, p} P(Pneumonia, WBCcount, Fever, Cough = c, Paleness = p) \]

- Is it possible to recover the full joint from the joint probabilities over a subset of variables?

Joint probabilities

- Is it possible to recover the full joint from the joint probabilities over a subset of variables?

\[\mathbf{P}(pneumonia, WBCcount) \quad 2 \times 3 \text{ matrix} \]

<table>
<thead>
<tr>
<th>Pneumonia</th>
<th>high</th>
<th>normal</th>
<th>low</th>
<th>[P(WBCcount)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.005</td>
</tr>
<tr>
<td>False</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.993</td>
</tr>
</tbody>
</table>

\[\mathbf{P}(Pneumonia) \]

\[\begin{align*} 0.001 & \\ 0.999 & \end{align*} \]
Joint probabilities and independence

• Is it possible to recover the full joint from the joint probabilities over a subset of variables?
• Only if the variables are independent !!!

\[\mathbf{P}(\text{pneumonia}, \text{WBC count}) \] \hspace{1cm} 2\times3 \text{ matrix}

\[\begin{array}{c|ccc}
\text{Pneumonia} & \text{high} & \text{normal} & \text{low} \\
\hline
\text{True} & ? & ? & ? \\
\text{False} & ? & ? & ? \\
\hline
\end{array} \]

\[\mathbf{P}(\text{WBC count}) \]

\[\mathbf{P}(\text{Pneumonia}) \]

\[\begin{array}{c|c|c}
\text{WBC count} & \text{high} & \text{normal} & \text{low} \\
\hline
\text{Pneumonia} & 0.001 & 0.999 & 0.002 \\
\hline
\end{array} \]

Conditional probabilities

• Conditional probability distribution.

\[P(A \mid B) = \frac{P(A, B)}{P(B)} \text{ s.t. } P(B) \neq 0 \]

• Product rule. Join probability can be expressed in terms of conditional probabilities

\[P(A, B) = P(A \mid B)P(B) \]

• Chain rule. Any joint probability can be expressed as a product of conditionals

\[P(X_1, X_2, \ldots, X_n) = P(X_n \mid X_1, \ldots, X_{n-1})P(X_1, \ldots, X_{n-1}) \]
\[= P(X_n \mid X_1, \ldots, X_{n-1})P(X_{n-1} \mid X_1, \ldots, X_{n-2})P(X_1, \ldots, X_{n-2}) \]
\[= \prod_{i=1}^{n} P(X_i \mid X_1, \ldots, X_{i-1}) \]
Conditional probabilities

Conditional probability
• Is defined in terms of the joint probability:

\[P(A \mid B) = \frac{P(A, B)}{P(B)} \text{ s.t. } P(B) \neq 0 \]

• Example:

\[
\begin{align*}
P(\text{pneumonia} = \text{true} \mid \text{WBC count} = \text{high}) &= \frac{P(\text{pneumonia} = \text{true}, \text{WBC count} = \text{high})}{P(\text{WBC count} = \text{high})} \\
P(\text{pneumonia} = \text{false} \mid \text{WBC count} = \text{high}) &= \frac{P(\text{pneumonia} = \text{false}, \text{WBC count} = \text{high})}{P(\text{WBC count} = \text{high})}
\end{align*}
\]

Conditional probability distribution
• Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

\[
P(\text{Pneumonia} = \text{true} \mid \text{WBC count} = \text{high})
\]

\[
\begin{array}{c|ccc}
\text{Pneumonia} & \text{high} & \text{normal} & \text{low} \\
\hline
\text{True} & 0.08 & 0.0001 & 0.0001 \\
\text{False} & 0.92 & 0.9999 & 0.9999 \\
\hline
1.0 & 1.0 & 1.0
\end{array}
\]

\[
P(\text{Pneumonia} = \text{true} \mid \text{WBC count} = \text{high}) + P(\text{Pneumonia} = \text{false} \mid \text{WBC count} = \text{high})
\]
Bayes rule

Conditional probability.

\[P(A \mid B) = \frac{P(A, B)}{P(B)} \]

\[P(A, B) = P(B \mid A)P(A) \]

Bayes rule:

\[P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \]

When is it useful?

- When we are interested in computing the diagnostic query from the causal probability
 \[P(cause \mid effect) = \frac{P(effect \mid cause)P(cause)}{P(effect)} \]
- **Reason:** It is often easier to assess causal probability
 - E.g. Probability of pneumonia causing fever vs. probability of pneumonia given fever

Bayes Rule in a simple diagnostic inference

- **Device** (equipment) operating *normally* or *malfunctioning*.
 - Operation of the device sensed indirectly via a sensor
- **Sensor reading** is either *high* or *low*

- **Device status**
 - **P(Device status)**
 - **normal** 0.9 0.1

- **Sensor reading**
 - **P(Sensor reading| Device status)**
 - **Sensor** **normal** **malfunc**
 - **High** 0.1 0.6
 - **Low** 0.9 0.4
Bayes Rule in a simple diagnostic inference.

- **Diagnostic inference**: compute the probability of device operating normally or malfunctioning given a sensor reading

\[P(\text{Device status} | \text{Sensor reading} = \text{high}) = ? \]

\[= \left(\frac{P(\text{Device status} = \text{normal} | \text{Sensor reading} = \text{high})}{P(\text{Device status} = \text{malfunctioning} | \text{Sensor reading} = \text{high})} \right) \]

- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate

- **Solution**: apply **Bayes rule** to reverse the conditioning variables

Bayes rule

Assume a variable A with multiple values \(a_1, a_2, \ldots a_k \)

Bayes rule can be rewritten as:

\[
P(A = a_j | B = b) = \frac{P(B = b | A = a_j)P(A = a_j)}{P(B = b)}
\]

\[= \frac{P(B = b | A = a_j)P(A = a_j)}{\sum_{i=1}^{k} P(B = b | A = a_i)P(A = a_i)}\]

Used in practice when we want to compute:

\[P(A | B = b) \quad \text{for all values of} \quad a_1, a_2, \ldots a_k \]
Probabilistic inference

Various inference tasks:

- **Diagnostic task. (from effect to cause)**
 \[P(\text{Pneumonia} \mid \text{Fever} = T) \]

- **Prediction task. (from cause to effect)**
 \[P(\text{Fever} \mid \text{Pneumonia} = T) \]

- **Other probabilistic queries** (queries on joint distributions).
 \[P(\text{Fever}) \]
 \[P(\text{Fever}, \text{ChestPain}) \]

Inference

Any query can be computed from the full joint distribution !!!

- **Joint over a subset of variables** is obtained through marginalization
 \[P(A = a, C = c) = \sum_i \sum_j P(A = a, B = b_j, C = c, D = d_j) \]

- **Conditional probability over set of variables**, given other variables’ values is obtained through marginalization and definition of conditionals
 \[P(D = d \mid A = a, C = c) = \frac{P(A = a, C = c, D = d)}{P(A = a, C = c)} \]
 \[= \frac{\sum_i P(A = a, B = b_i, C = c, D = d_j)}{\sum_i \sum_j P(A = a, B = b_j, C = c, D = d_j)} \]
Inference

Any query can be computed from the full joint distribution !!!

- Any joint probability can be expressed as a product of conditionals via the chain rule.

\[
P(X_1, X_2, \ldots, X_n) = P(X_n | X_1, \ldots, X_{n-1}) P(X_1, \ldots, X_{n-1})
\]

\[
= P(X_n | X_1, \ldots, X_{n-1}) P(X_{n-1} | X_1, \ldots, X_{n-2}) P(X_1, \ldots, X_{n-2})
\]

\[
= \prod_{i=1}^{n} P(X_i | X_1, \ldots, X_{i-1})
\]

- Sometimes it is easier to define the distribution in terms of conditional probabilities:
 - E.g. \(P(Fever | Pneumonia = T) \)
 - \(P(Fever | Pneumonia = F) \)

Modeling uncertainty with probabilities

- Defining the full joint distribution makes it possible to represent and reason with uncertainty in a uniform way.
- We are able to handle an arbitrary inference problem.

Problems:

- **Space complexity.** To store a full joint distribution we need to remember \(O(d^n) \) numbers.
 - \(n \) – number of random variables, \(d \) – number of values
- **Inference (time) complexity.** To compute some queries requires \(O(d^n) \) steps.
- **Acquisition problem.** Who is going to define all of the probability entries?
Medical diagnosis example

- **Space complexity.**
 - Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), WBC count (3: high, normal, low), paleness (2: T,F)
 - Number of assignments: 2*2*2*3*2=48
 - We need to define at least 47 probabilities.

- **Time complexity.**
 - Assume we need to compute the marginal of Pneumonia=T from the full joint

\[
P(Pneumonia = T) = \sum_{i \in T,F} \sum_{j \in T,F} \sum_{k=h,n,l} \sum_{u \in T,F} P(Fever = i, Cough = j, WBC count = k, Pale = u)
\]

 - Sum over: 2*2*3*2=24 combinations

Modeling uncertainty with probabilities

- **Knowledge based system era (70s – early 80’s)**
 - Extensional non-probabilistic models
 - Solve the space, time and acquisition bottlenecks in probability-based models
 - Froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general

- Breakthrough (late 80s, beginning of 90s)
 - **Bayesian belief networks**
 - Give solutions to the space, acquisition bottlenecks
 - Partial solutions for time complexities
 - Bayesian belief network