CS 1571 Introduction to AI Lecture 17

Planning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administration announcements

Midterm:

- Thursday, October 28, 2010
- In-class
- Closed book

What does it cover?

• All material covered by the end of lecture on October 21

Homework 7:

- first part is out inferences in FOL
- Homework assignment due in 2 weeks

CS 1571 Intro to Al

Administration announcements

Simulated annealing competition:

- 1. Jesse Thomason
- 2. Brian Dicks
- 3. Yiran Lin

CS 1571 Intro to Al

M. Hauskrecht

Administration announcements

Tic-tac-toe competition:

- 1. Brian Dicks
- 2. Yuxin Liu
- 3. Eric Fluharty
- 4. Bradlee Krupa
- 5. Bengi Johnson

CS 1571 Intro to Al

Representation of actions, situations, events

Propositional and first order logic assume a static world

Once something is true it cannot become false

But, the world is dynamic:

- What is true now may not be true tomorrow
- Changes in the world may be triggered by our activities

Problems:

- How to represent the change in the FOL?
- How to represent actions we can use to change the world?

CS 1571 Intro to Al

M. Hauskrecht

Planning

Planning problem:

- find a sequence of actions that achieves some goal
- an instance of a search problem
- the state description is typically very complex and relies on a logic-based representation

Methods for modeling and solving a planning problem:

- State space search
- Situation calculus based on FOL
- STRIPS state space search algorithm
- Partial-order planning algorithms

CS 1571 Intro to Al

Situation calculus

Provides a framework for representing change, actions and for reasoning about them

• Situation calculus

- based on the first-order logic,
- a situation variable models new states of the world
- action objects model activities
- uses inference methods developed for FOL to do the reasoning

CS 1571 Intro to Al

M. Hauskrecht

Situation calculus

- Logic for reasoning about changes in the state of the world
- The world is described by:
 - Sequences of **situations** of the current state
 - Changes from one situation to another are caused by actions
- The situation calculus allows us to:
 - Describe the initial state and a goal state
 - Build the KB that describes the effect of actions (operators)
 - Prove that the KB and the initial state lead to a goal state
 - extracts a plan as side-effect of the proof

CS 1571 Intro to Al

Situation calculus

The language is based on the First-order logic plus:

- Special variables: s,a objects of type situation and action
- Action functions: return actions.
 - E.g. Move(A, TABLE, B) represents a move action
 - -Move(x,y,z) represents an action schema
- Two special function symbols of type situation
 - $-s_0$ initial situation
 - -DO(a,s) denotes the situation obtained after performing an action a in situation s
- Situation-dependent functions and relations (also called fluents)
 - **Relation:** On(x,y,s) object x is on object y in situation s;
 - Function: Above(x,s) object that is above x in situation s.

CS 1571 Intro to Al

M. Hauskrecht

Situation calculus. Blocks world example.

	В
A B C	C
Initial state	Cool

 $On(A, Table, s_0)$ $On(B, Table, s_0)$ Find a state (situation) s, such that

Λ

 $On(C, Table, s_0)$ On(A, B, s) $Clear(A, s_0)$ On(B, C, s) $Clear(B, s_0)$ On(C, Table, s)

Clear(C, s_0)
Clear(Table, s_0)

CS 1571 Intro to Al

Knowledge base: Axioms.

Knowledge base needed to support the reasoning:

• Must represent changes in the world due to actions.

Two types of axioms:

- Effect axioms
 - changes in situations that result from actions
- Frame axioms
 - things preserved from the previous situation

CS 1571 Intro to Al

M. Hauskrecht

Blocks world example. Effect axioms.

Effect axioms:

Moving x from y to z. MOVE(x, y, z)

Effect of move changes on On relations

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow On(x, z, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow \neg On(x, y, DO(MOVE(x, y, z), s))$$

Effect of move changes on Clear relations

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \rightarrow Clear(y, DO(MOVE(x, y, z), s))$$

$$On(x, y, s) \land Clear(x, s) \land Clear(z, s) \land (z \neq Table)$$

 $\rightarrow \neg Clear(z, DO(MOVE(x, y, z), s))$

CS 1571 Intro to Al

Blocks world example. Frame axioms.

- Frame axioms.
 - Represent things that remain unchanged after an action.

On relations:

$$On(u,v,s) \land (u \neq x) \land (v \neq y) \rightarrow On(u,v,DO(MOVE(x,y,z),s))$$

Clear relations:

$$Clear(u, s) \land (u \neq z) \rightarrow Clear(u, DO(MOVE(x, y, z), s))$$

CS 1571 Intro to Al

M. Hauskrecht

Planning in situation calculus

Planning problem:

- find a sequence of actions that lead to a goal
- Planning in situation calculus is converted to the theorem proving problem

Goal state:

$$\exists s \ On(A,B,s) \land On(B,C,s) \land On(C,Table,s)$$

- Possible inference approaches:
 - Inference rule approach
 - Conversion to SAT
- Plan (solution) is a byproduct of theorem proving.
- Example: blocks world

CS 1571 Intro to AI M. Hauskrecht

Planning in the blocks world.

Initial state (s0)

s1

Action: MOVE(B, Table, C) $s_1 = DO(MOVE(B, Table, C), s_0)$ $On(A, Table, s_1)$ $Clear(A, s_1)$ $Clear(B, c_1)$ $Clear(B, c_1)$ $Clear(B, c_1)$ $Clear(B, c_1)$ $Clear(C, c_1)$

CS 1571 Intro to Al

Planning in situation calculus.

Planning problem:

- Find a sequence of actions that lead to a goal
- Is a special type of a search problem
- Planning in situation calculus is converted to theorem proving.

• Problems:

- Large search space
- Large number of axioms to be defined for one action
- Proof may not lead to the best (shortest) plan.

CS 1571 Intro to Al

M. Hauskrecht

Planning problems

Properties of many (real-world) planning problems:

- The description of the state of the world is very complex
- Many possible actions to apply in any step
- Actions are typically local
 - - they affect only a small portion of a state description
- Goals are defined as conditions referring only to a small portion of state
- Plans consists of a large number of actions

The state space search and situation calculus frameworks may be

 too cumbersome and inefficient to represent and solve the planning problems

CS 1571 Intro to Al

Situation calculus: problems

Frame problem refers to:

• The need to represent a large number of frame axioms **Solution:** combine positive and negative effects in one rule

$$On(u, v, DO(MOVE(x, y, z), s)) \Leftrightarrow (\neg((u = x) \land (v = y)) \land On(u, v, s)) \lor \lor (((u = x) \land (v = z)) \land On(x, y, s) \land Clear(x, s) \land Clear(z, s))$$

Inferential frame problem:

We still need to derive properties that remain unchanged

Other problems:

- Qualification problem enumeration of all possibilities under which an action holds
- Ramification problem enumeration of all inferences that follow from some facts

CS 1571 Intro to Al

M. Hauskrecht

Solutions

- Complex state description and local action effects:
 - avoid the enumeration and inference of every state component, focus on changes only
- Many possible actions:
 - Apply actions that make progress towards the goal
 - Understand what the effect of actions is and reason with the consequences
- Sequences of actions in the plan can be too long:
 - Many goals consists of independent or nearly independent sub-goals
 - Allow goal decomposition & divide and conquer strategies

STRIPS planner

Defines a **restricted representation language** as compared to the situation calculus

Advantage: leads to more efficient planning algorithms.

- State-space search with structured representations of states, actions and goals
- Action representation avoids the frame problem

STRIPS planning problem:

• much like a standard search problem

CS 1571 Intro to Al