CS 1571 Introduction to AI Lecture 16

Inference in first-order logic. Knowledge based systems.

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administration announcements

Midterm:

- Thursday, October 28, 2010
- In-class
- Closed book

What does it cover?

· All material covered by the end of lecture today

Homework 7:

- first part out today to practice inferences in FOL
- Homework assignment due in 2 weeks

CS 1571 Intro to Al

Logical inference in FOL

Logical inference problem:

• Given a knowledge base KB (a set of sentences) and a sentence α , does the KB semantically entail α ?

$$KB = \alpha$$
?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is undecidable !!!. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

CS 1571 Intro to Al

M. Hauskrecht

Variable substitutions

- Variables in the sentences can be substituted with terms. (terms = constants, variables, functions)
- Substitution:
 - Is represented by a mapping from variables to terms $\{x_1/t_1, x_2/t_2, ...\}$
 - Application of the substitution to sentences

$$SUBST(\{x/Sam, y/Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$

 $SUBST(\{x/z, y/fatherof(John)\}, Likes(x, y)) =$
 $Likes(z, fatherof(John))$

CS 1571 Intro to Al

Inference rules for quantifiers

• Universal elimination

$$\frac{\forall x \, \phi(x)}{\phi(a)}$$

a - is a constant symbol

- substitutes a variable with a constant symbol

 $\forall x \ Likes(x, IceCream)$

Likes(Ben, IceCream)

Existential elimination.

$$\frac{\exists x \; \phi(x)}{\phi(a)}$$

 Substitutes a variable with a constant symbol that does not appear elsewhere in the KB

 $\exists x \ Kill(x, Victim)$

Kill(*Murderer*, *Victim*)

CS 1571 Intro to Al

M. Hauskrecht

Universally quantified sentences

• **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms

$$\frac{\forall x \, \phi(x)}{\phi(a)}$$

a - is a constant symbol

• Solution: ?

Unification

• **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms

$$\frac{\forall x \ \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

- Solution: Try substitutions that may help
 - Use substitutions of "similar" sentences in KB
- Unification takes two similar sentences and computes the substitution that makes them look the same, if it exists

UNIFY
$$(p,q) = \sigma$$
 s.t. SUBST $(\sigma, p) = SUBST(\sigma, q)$

CS 1571 Intro to Al

M. Hauskrecht

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma,p) = SUBST(\sigma,q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x \mid Jane\}$$

$$UNIFY(Knows(John, x), Knows(y, Ann)) = \{x \mid Ann, y \mid John\}$$

$$UNIFY(Knows(John, x), Knows(y, Ann)) = \{x \mid Ann, y \mid John\}$$

$$UNIFY$$
 (Knows (John, x), Knows (y, MotherOf (y)))
= $\{x \mid MotherOf (John), y \mid John\}$

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

CS 1571 Intro to Al

Generalized inference rules.

• Use substitutions that let us make inferences

Example: Modus Ponens

• If there exists a substitution σ such that

SUBST
$$(\sigma, A_i) = SUBST(\sigma, A_i')$$
 for all i=1,2, n

$$\frac{A_1 \wedge A_2 \wedge \dots A_n \Rightarrow B, \quad A_1', A_2', \dots A_n'}{SUBST \ (\sigma, B)}$$

- Substitution that satisfies the generalized inference rule can be build via unification process
- Advantage of the generalized rules: they are focused
 - only substitutions that allow the inferences to proceed

M. Hauskrecht

Resolution inference rule

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\sigma = UNIFY \ (\phi_{i}, \neg \psi_{j}) \neq fail$$

$$\frac{\phi_{1} \lor \phi_{2} \dots \lor \phi_{k}, \quad \psi_{1} \lor \psi_{2} \lor \dots \psi_{n}}{SUBST(\sigma, \phi_{1} \lor \dots \lor \phi_{i-1} \lor \phi_{i+1} \dots \lor \phi_{k} \lor \psi_{1} \lor \dots \lor \psi_{j-1} \lor \psi_{j+1} \dots \psi_{n})}$$

Example:
$$P(x) \lor Q(x), \neg Q(John) \lor S(y)$$

 $P(John) \lor S(y)$

Inference with resolution rule

- Proof by refutation:
 - Prove that KB, $\neg \alpha$ is unsatisfiable
 - resolution is refutation-complete
- Main procedure (steps):
 - 1. Convert KB, $\neg \alpha$ to CNF with ground terms and universal variables only
 - 2. Apply repeatedly the resolution rule while keeping track and consistency of substitutions
 - 3. Stop when empty set (contradiction) is derived or no more new resolvents (conclusions) follow

M. Hauskrecht

Conversion to CNF

1. Eliminate implications, equivalences

$$(p \Rightarrow q) \rightarrow (\neg p \lor q)$$

2. Move negations inside (DeMorgan's Laws, double negation)

$$\neg(p \land q) \rightarrow \neg p \lor \neg q$$

$$\neg(p \lor q) \rightarrow \neg p \land \neg q$$

$$\neg\exists x \ p \rightarrow \exists x \neg p$$

$$\neg\exists x \ p \rightarrow \forall x \neg p$$

$$\neg p \rightarrow p$$

3. Standardize variables (rename duplicate variables)

$$(\forall x \ P(x)) \lor (\exists x \ Q(x)) \to (\forall x \ P(x)) \lor (\exists y \ Q(y))$$

4. Move all quantifiers left (no invalid capture possible)

$$(\forall x \ P(x)) \lor (\exists y \ Q(y)) \to \forall x \ \exists y \ P(x) \lor Q(y)$$

Conversion to CNF

- **5. Skolemization** (removal of existential quantifiers through elimination)
- If no universal quantifier occurs before the existential quantifier, replace the variable with a new constant symbol

$$\exists y \ P(A) \lor Q(y) \rightarrow P(A) \lor Q(B)$$

• If a universal quantifier precede the existential quantifier replace the variable with a function of the "universal" variable

$$\forall x \; \exists y \; P(x) \vee Q(y) \rightarrow \forall x \; \; P(x) \vee Q(F(x))$$

F(x) - a special function

- called Skolem function

M. Hauskrecht

Conversion to CNF

6. Drop universal quantifiers (all variables are universally quantified)

$$\forall x \ P(x) \lor Q(F(x)) \to P(x) \lor Q(F(x))$$

7. Convert to CNF using the distributive laws

$$p \lor (q \land r) \rightarrow (p \lor q) \land (p \lor r)$$

The result is a CNF with variables, constants, functions

Resolution example

KB

 $\neg \alpha$

$$\neg P(w) \lor Q(w), \neg Q(y) \lor S(y), P(x) \lor R(x), \neg R(z) \lor S(z), \neg S(A)$$

M. Hauskrecht

Resolution example

KB

 $\neg \alpha$

$$\neg P(w) \lor Q(w), \neg Q(y) \lor S(y), P(x) \lor R(x), \neg R(z) \lor S(z), \neg S(A)$$

$$\{y/w\}$$

$$\neg P(w) \lor S(w)$$

Dealing with equality

- · Resolution works for first-order logic without equalities
- To incorporate equalities we need an additional inference rule
- Demodulation rule

$$\begin{split} \sigma &= UNIFY\ (\phi_i, t_1) \neq fail \\ \frac{\phi_1 \vee \phi_2 \dots \vee \phi_k, \quad t_1 = t_2}{SUBST(\{SUBST(\sigma, t_1) / SUBST(\sigma, t_2)\}, \phi_1 \vee \dots \vee \phi_{i-1} \vee \phi_{i+1} \dots \vee \phi_k} \end{split}$$

• Example:
$$\frac{P(f(a)), f(x) = x}{P(a)}$$

- Paramodulation rule: more powerful
- Resolution+paramodulation give a refutation-complete proof theory for FOL

Sentences in Horn normal form

- Horn normal form (HNF) in the propositional logic
 - a special type of clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Typically written as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

- A clause with one literal, e.g. A, is also called a fact
- A clause representing an implication (with a conjunction of positive literals in antecedent and one positive literal in consequent), is also called a rule

CS 1571 Intro to Al

M. Hauskrecht

Horn normal form in FOL

First-order logic (FOL)

adds variables and quantifiers, works with terms
 Generalized modus ponens rule:

$$\sigma = \text{a substitution s.t. } \forall i \ SUBST(\sigma, \phi_i') = SUBST(\sigma, \phi_i)$$

$$\underline{\phi_1', \phi_2' \dots, \phi_n', \quad \phi_1 \wedge \phi_2 \wedge \dots \phi_n \Rightarrow \tau}$$

$$\underline{SUBST(\sigma, \tau)}$$

Generalized modus ponens:

- is **complete** for inferences on facts for KBs in Horn form;
- Not all first-order logic sentences can be expressed in this form

CS 1571 Intro to Al

Forward and backward chaining

Two inference procedures based on modus ponens for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Typical usage: infer all sentences entailed by the existing KB.

Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Typical usage: If we want to prove that the target (goal) sentence α is entailed by the existing KB.

Both procedures are complete for KBs in Horn form !!!

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied Assume the KB with the following rules:

KB: R1: Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$

R2: Sailboat $(y) \land RowBoat (z) \Rightarrow Faster (y, z)$

R3: $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

Theorem: Faster (Titanic, PondArrow)

?

CS 1571 Intro to Al

Forward chaining example

- KB: R1: Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$
 - R2: Sailboat $(y) \land RowBoat(z) \Rightarrow Faster(y, z)$
 - R3: $Faster(x, y) \wedge Faster(y, z) \Rightarrow Faster(x, z)$
 - F1: Steamboat (Titanic)
 - F2: Sailboat (Mistral)
 - F3: RowBoat(PondArrow)

?

CS 1571 Intro to Al

M. Hauskrecht

M. Hauskrecht

Forward chaining example

- KB: R1: Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$
 - R2: Sailboat $(y) \land RowBoat(z) \Rightarrow Faster(y, z)$
 - R3: $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$
 - F1: Steamboat (Titanic)
 - F2: Sailboat (Mistral)
 - F3: RowBoat(PondArrow)

Rule R1 is satisfied:

F4: Faster(Titanic, Mistral)

CS 1571 Intro to Al

Forward chaining example

KB: R1: Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$

> R2: $Sailboat(y) \land RowBoat(z) \Rightarrow Faster(y, z)$

R3: $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$

Steamboat (Titanic) F1:

Sailboat (Mistral) F2:

RowBoat(PondArrow) F3:

Rule R1 is satisfied:

F4: Faster(Titanic, Mistral)

Faster(Mistral, PondArrow) F5:

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining example

KB: R1: Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$

> R2: $Sailboat(v) \land RowBoat(z) \Rightarrow Faster(v, z)$

 $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ R3:

F1: Steamboat (Titanic)

Sailboat (Mistral) F2:

RowBoat(PondArrow) F3.

Rule R1 is satisfied:

Faster(Titanic, Mistral)

Rule R2 is satisfied:

Faster(Mistral, PondArrow) F5:

Rule R3 is satisfied:

Faster(*Titanic*, *PondArrow*) F6.

CS 1571 Intro to Al

Backward chaining example

Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the antecedents (if part) of the rule & repeat recursively.

KB: R1: Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$

R2: $Sailboat(y) \land RowBoat(z) \Rightarrow Faster(y, z)$

R3: $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

Theorem: Faster (Titanic, PondArrow)

CS 1571 Intro to Al

M. Hauskrecht

Backward chaining example

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

X

Steamboat $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$

Faster (Titanic, PondArrow)

 $\{x \mid Titanic, y \mid PondArrow\}$

CS 1571 Intro to Al

Knowledge-based system

Knowledge base

Inference engine

Knowledge base:

- A set of sentences that describe the world in some formal (representational) language (e.g. first-order logic)
- Domain specific knowledge

Inference engine:

- A set of procedures that work upon the representational language and can infer new facts or answer KB queries (e.g. resolution algorithm, forward chaining)
- Domain independent

CS 1571 Intro to Al

M. Hauskrecht

Automated reasoning systems

Examples and main differences:

Theorem provers

 Prove sentences in the first-order logic. Use inference rules, resolution rule and resolution refutation.

Deductive retrieval systems

- Systems based on rules (KBs in Horn form)
- Prove theorems or infer new assertions (forward, backward chaining)

Production systems

- Systems based on rules with actions in antecedents
- Forward chaining mode of operation

Semantic networks

 Graphical representation of the world, objects are nodes in the graphs, relations are various links

CS 1571 Intro to Al

Production systems

Based on rules, but different from KBs in the Horn form Knowledge base is divided into:

- A Rule base (includes rules)
- A Working memory (includes facts)

A special type of if – then rule

$$p_1 \wedge p_2 \wedge \dots p_n \Rightarrow a_1, a_2, \dots, a_k$$

- Antecedent: a conjunction of literals
 - facts, statements in predicate logic
- Consequent: a conjunction of actions. An action can:
 - **ADD** the fact to the KB (working memory)
 - **REMOVE** the fact from the KB (consistent with logic?)
 - QUERY the user, etc ...

CS 1571 Intro to Al

M. Hauskrecht

Production systems

Based on rules, but different from KBs in the Horn form Knowledge base is divided into:

- A Rule base (includes rules)
- A Working memory (includes facts)

A special type of if – then rule

$$p_1 \wedge p_2 \wedge \dots p_n \Rightarrow a_1, a_2, \dots, a_k$$

- Antecedent: a conjunction of literals
 - facts, statements in predicate logic
- Consequent: a conjunction of actions. An action can:
 - **ADD** the fact to the KB (working memory)
 - REMOVE the fact from the KB ← !!! Different from logic
 - **QUERY** the user, etc ...

Production systems

- Use forward chaining to do reasoning:
 - If the antecedent of the rule is satisfied (rule is said to be "active") then its consequent can be executed (it is "fired")
- **Problem:** Two or more rules are active at the same time. Which one to execute next?

R27 Conditions R27
$$\checkmark$$
 Actions R27 R105 Conditions R105 \checkmark Actions R105

• Strategy for selecting the rule to be fired from among possible candidates is called **conflict resolution**

CS 1571 Intro to Al

M. Hauskrecht

Production systems

- Why is conflict resolution important? Or, why do we care about the order?
- Assume that we have two rules and the preconditions of both are satisfied:

R1:
$$A(x) \wedge B(x) \wedge C(y) \Rightarrow add D(x)$$

R2:
$$A(x) \wedge B(x) \wedge E(z) \Rightarrow delete \ A(x)$$

• What can happen if rules are triggered in different order?

CS 1571 Intro to Al

Production systems

- Why is conflict resolution important? Or, Why do we care about the order?
- Assume that we have two rules and the preconditions of both are satisfied:

R1:
$$A(x) \wedge B(x) \wedge C(y) \Rightarrow add D(x)$$

R2:
$$A(x) \wedge B(x) \wedge E(z) \Rightarrow delete \ A(x)$$

- What can happen if rules are triggered in different order?
 - If R1 goes first, R2 condition is still satisfied and we infer D(x)
 - If R2 goes first we may never infer D(x)

CS 1571 Intro to Al

M. Hauskrecht

Production systems

- Problems with production systems:
 - Additions and Deletions can change a set of active rules;
 - If a rule contains variables testing all instances in which the rule is active may require a large number of unifications.
 - Conditions of many rules may overlap, thus requiring to repeat the same unifications multiple times.
- Solution: Rete algorithm
 - gives more efficient solution for managing a set of active rules and performing unifications
 - Implemented in the system OPS-5 (used to implement XCON – an expert system for configuration of DEC computers)

CS 1571 Intro to AI M. Hauskrecht

Rete algorithm

• Assume a set of rules:

$$A(x) \wedge B(x) \wedge C(y) \Rightarrow add \ D(x)$$

 $A(x) \wedge B(y) \wedge D(x) \Rightarrow add \ E(x)$
 $A(x) \wedge B(x) \wedge E(z) \Rightarrow delete \ A(x)$

- And facts: A(1), A(2), B(2), B(3), B(4), C(5)
- Rete:
 - Compiles the rules to a network that merges conditions of multiple rules together (avoid repeats)
 - Propagates valid unifications
 - Reevaluates only changed conditions

CS 1571 Intro to Al

M. Hauskrecht

Rete algorithm. Network.

Rules: $A(x) \wedge B(x) \wedge C(y) \Rightarrow add D(x)$

 $A(x) \wedge B(y) \wedge D(x) \Rightarrow add E(x)$

 $A(x) \wedge B(x) \wedge E(z) \Rightarrow delete A(x)$

Facts: A(1), A(2), B(2), B(3), B(4), C(5)

CS 1571 Intro to Al

Conflict resolution strategies

- **Problem:** Two or more rules are active at the same time. Which one to execute next?
- Solutions:
 - No duplication (do not execute the same rule twice)
 - Recency. Rules referring to facts newly added to the working memory take precedence
 - **Specificity.** Rules that are more specific are preferred.
 - Priority levels. Define priority of rules, actions based on expert opinion. Have multiple priority levels such that the higher priority rules fire first.

CS 1571 Intro to Al

M. Hauskrecht

Semantic network systems

- Knowledge about the world described in terms of graphs. Nodes correspond to:
 - Concepts or objects in the domain.

Links to relations. Three kinds:

- Subset links (isa, part-of links)
- Member links (instance links)

Inheritance relation links

- Function links.
- Can be transformed to the first-order logic language
- Graphical representation is often easier to work with
 - better overall view on individual concepts and relations

CS 1571 Intro to Al

