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Administration announcements

Midterm:

* Thursday, October 28, 2010
* In-class

* Closed book

What does it cover?
« All material covered by the end of lecture today

Homework 7:
 first part out today to practice inferences in FOL
* Homework assignment due in 2 weeks
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Logical inference in FOL

Logical inference problem:

* Given a knowledge base KB (a set of sentences) and a
sentence « , does the KB semantically entail o ?

KB|=ma ?

In other words: In all interpretations in which sentences in the
KB are true, is also & true?

Logical inference problem in the first-order logic is
undecidable !!!. No procedure that can decide the entailment
for all possible input sentences in a finite number of steps.
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Variable substitutions

» Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)

* Substitution:
— Is represented by a mapping from variables to terms

{x, /t,x,/t,,...}

— Application of the substitution to sentences
SUBST({x/Sam,y/ Pam}, Likes(x, y)) = Likes(Sam, Pam)

SUBST ({x/ z,y/ fatherof (John)}, Likes(x, y)) =
Likes (z, fatherof (John))
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Inference rules for quantifiers

* Universal elimination
Vx @(x)
¢(a)
— substitutes a variable with a constant symbol
Vx Likes(x, IceCream) Likes(Ben, IceCream)

a - 1is a constant symbol

« Existential elimination.
dx @(x)
$(a)

— Substitutes a variable with a constant symbol that does not
appear elsewhere in the KB

Ix Kill(x,Victim) Kill(Murderer,Victim)
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Universally quantified sentences

* Problem in inference: Universal elimination gives many
opportunities for substituting variables with ground terms

Vx @(x)
¢(a)

e Solution: ?

a - 1is a constant symbol
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Unification

* Problem in inference: Universal elimination gives many
opportunities for substituting variables with ground terms

Vx $(x)
¢(a)

* Solution: Try substitutions that may help

a -1is a constant symbol

— Use substitutions of “‘similar” sentences in KB

 Unification — takes two similar sentences and computes the
substitution that makes them look the same, if it exists

UNIFY (p,q)=oc s.t. SUBST( o, p)= SUBST (o,q)
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Unification. Examples.

e Unification:
UNIFY (p,q) =0 st.SUBST(o,p)=SUBST (0,q)

* Examples:

UNIFY (Knows (John, x), Knows (John, Jane)) = {x / Jane}
UNIFY(Knows(John,x), Knows(y, Ann)) ={x/ Ann,y / John}

UNIFY (Knows (John,x), Knows (y, MotherOf (y)))
= {x/ MotherOf (John), y/ John}

UNIFY (Knows (John, x), Knows (x, Elizabeth)) = fail
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Generalized inference rules.

e Use substitutions that let us make inferences
Example: Modus Ponens
e If there exists a substitution o such that

SUBST (o, A,) = SUBST (c,4,") foralli=1,2,n

ANA N A =B, A" A4,,. A’
SUBST (o, B)

» Substitution that satisfies the generalized inference rule can be
build via unification process

» Advantage of the generalized rules: they are focused
— only substitutions that allow the inferences to proceed
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Resolution inference rule

* Recall: Resolution inference rule is sound and complete
(refutation-complete) for the propositional logic and CNF

Av B, —=AvC

BvC
* Generalized resolution rule is sound and refutation complete
for the first-order logic and CNF w/o equalities (if unsatisfiable
the resolution will find the contradiction)

o =UNIFY (9., ;) # fail
AVE NG, YV, V..,
SUBST(0,¢ V..V NPy . VO NVY NV N VYY)
Example:  P(x)vO(x), —QO(John)v S(y)
P(John)v S(y)
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Inference with resolution rule

* Proof by refutation:
— Provethat KB ,— a is unsatisfiable
— resolution is refutation-complete

* Main procedure (steps):
1. Convert KB ,— a to CNF with ground terms and
universal variables only

2. Apply repeatedly the resolution rule while keeping track
and consistency of substitutions

3. Stop when empty set (contradiction) is derived or no more
new resolvents (conclusions) follow
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Conversion to CNF

1. Eliminate implications, equivalences
(p=4q)—=> (=rVvaq)
2. Move negations inside (DeMorgan’s Laws, double negation)

—(pAg)—>—-pVv-—gq —Vx p— 3Ix—p
—(pVvqg)>-pAr—gq —3x p > Vx —p

3. Standardize variables (rename duplicate variables)
(Vx P(x)) v (3x Q(x)) = (Vx P(x)) v Ty O(»))
4. Move all quantifiers left (no invalid capture possible )

(Vx P(x))v 3y Q(¥) = Vx Iy P(x)v Q(¥)
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Conversion to CNF

5. Skolemization (removal of existential quantifiers through
elimination)

* Ifno universal quantifier occurs before the existential
quantifier, replace the variable with a new constant symbol

y P(A)v O(y) = P(A)v Q(B)

» Ifauniversal quantifier precede the existential quantifier
replace the variable with a function of the “universal” variable

Vx3dy P(x)v Q(y) > Vx P(x)v Q(F(x))

F(x) - aspecial function
- called Skolem function
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Conversion to CNF

6. Drop universal quantifiers (all variables are universally
quantified)

Vx P(x)v Q(F(x)) > P(x)v Q(F(x))

7. Convert to CNF using the distributive laws
pv(gnrr)y=>(pvag)r(pvr)

The result is a CNF with variables, constants, functions
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Resolution example
KB — QL

—P(w)v O(w),=0(y) v S(y), P(x)Vv R(x), =R(2) v §(2), —=S(4)
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Resolution example
KB —Q

—P(w)v O(w),=0(y) v S(¥), P(x)Vv R(x), =R(2) v §(z), —=S(4)

{y/w}
—P(w)v S(w)
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Resolution example
KB — QL

—P(w)v O(w),=0(y) v S(y), P(x)Vv R(x), =R(2) v §(2), —=S(4)

W/ w;

—P(w)v S(w) {x/w}

S(w)v R(w)
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Resolution example
KB —Q

—P(w)v O(w),=0(y) v S(¥), P(x)Vv R(x), =R(2) v §(z), —=S(4)

{y/w;

—P(w) v S(w) {x/w}

(z/w)
S(w)v R(w)

S(w)
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Resolution example
KB — QL

—P(w)v O(w),=0(y) v S(y), P(x)Vv R(x), =R(2) v §(2), —=S(4)

{y/w}
—P(w)v S(w) {x/w}
{z/w}
S(w)v R(w)
S(w) w/ A}
KB =«
Contradiction JZT
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Dealing with equality

Resolution works for first-order logic without equalities
To incorporate equalities we need an additional inference rule
Demodulation rule

o =UNIFY (¢,,t)) # fail
V..V, 1=t

SUBST({SUBST(o,t,)/ SUBST(o,t,))} , 4V ..V V@, ..V,

Example: P(f(a)), f(x)=x
P(a)
Paramodulation rule: more powerful

Resolution+paramodulation give a refutation-complete
proof theory for FOL
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Sentences in Horn normal form

* Horn normal form (HNF) in the propositional logic
— a special type of clause with at most one positive literal

(Av =B)A(=Av -Cv D)
Typically written as: (B = A)A(AAC)= D)

* A clause with one literal, e.g. A4, is also called a fact

* A clause representing an implication (with a conjunction of
positive literals in antecedent and one positive literal in
consequent), is also called a rule
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Horn normal form in FOL

First-order logic (FOL)
— adds variables and quantifiers, works with terms
Generalized modus ponens rule:

o = asubstitution s.t. Vi SUBST (o,¢.') = SUBST (o, ¢,)

' 9,0, AP =T
SUBST (o,7)

Generalized modus ponens:
* is complete for inferences on facts for KBs in Horn form;

* Not all first-order logic sentences can be expressed in this
form
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Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:
* Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied.

Typical usage: infer all sentences entailed by the existing KB.
* Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule
prove the premises of the rule. Continue recursively.

Typical usage: If we want to prove that the target (goal)
sentence & is entailed by the existing KB.

Both procedures are complete for KBs in Horn form !!!
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Forward chaining example

* Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied

Assume the KB with the following rules:
KB: RI1: Steamboat (x) A Sailboat (y) = Faster (x,)

R2: Sailboat (y) A RowBoat (z) = Faster (y,z)
R3: Faster (x,y) A Faster (y,z) = Faster (x,z)

F1:  Steamboat (Titanic )
F2:  Sailboat (Mistral )
F3:  RowBoat(PondArrow)

Theorem: Faster (Titanic , PondArrow ) ?
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Forward chaining example

KB: RI1: Steamboat (x) A Sailboat (y) = Faster (x,y)
R2:  Sailboat (y) A RowBoat (z) = Faster (y,z)
R3:  Faster (x,y) A Faster (y,z) = Faster (x,z)
Fl:  Steamboat (Titanic)
F2:  Sailboat (Mistral )
F3:  RowBoat(PondArrow)

?
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Forward chaining example

KB: RI1: Steamboat (x) A Sailboat (y) = Faster (x,y)
R2: Sailboat (y) A RowBoat (z) = Faster (y,z)
R3:  Faster (x,y) A Faster (y,z) = Faster (x,z)
Fl:  Steamboat (Titanic )
F2:  Sailboat (Mistral )
F3:  RowBoat(PondArrow)

Rule R1 is satisfied:

F4.

Faster(Titanic, Mistral) <=
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Forward chaining example

KB: RI1: Steamboat (x) A Sailboat (y) = Faster (x,y)
R2:  Sailboat (y) A RowBoat (z) = Faster (y,z)
R3:  Faster (x,y) A Faster (y,z) = Faster (x,z)
Fl:  Steamboat (Titanic)
F2:  Sailboat (Mistral )
F3:  RowBoat(PondArrow)
Rule R1 is satisfied:
F4:  Faster(Titanic, Mistral) <=
Rule R2 is satisfied:
F5:  Faster(Mistral, PondArrow) <
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Forward chaining example

KB: RI1: Steamboat (x) A Sailboat (y) = Faster (x,y)
R2: Sailboat (y) A RowBoat (z) = Faster (y,z)
R3:  Faster (x,y) A Faster (y,z) = Faster (x,z)
Fl:  Steamboat (Titanic )
F2:  Sailboat (Mistral )
F3:  RowBoat(PondArrow)

Rule R1 is satisfied:

F4:  Faster(Titanic, Mistral) <=
Rule R2 is satisfied:
F5:  Faster(Mistral, PondArrow) <

Rule R3 is satisfied:

Fé6:

Faster(Titanic, PondArrow) <=
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Backward chaining example

* Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule
prove the antecedents (if part) of the rule & repeat recursively.

KB: RI: Steamboat (x) A Sailboat (y) = Faster (x,y)

R2: Sailboat (y) A RowBoat (z) = Faster (y,z)
R3:  Faster (x, y) A Faster (y,z) = Faster (x,z)

F1:  Steamboat (Titanic )
F2:  Sailboat (Mistral )
F3:  RowBoat(PondArrow)

Theorem: Faster (Titanic , PondArrow )
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Backward chaining example

Faster (Titanic , PondArrow) F1: Steamboat (Titanic )

R1 F2: Sailboat (Mistral)

F3: RowBoat PondArrow
Steamboa(Titanic)

v

Sailboat(PondArrow)
X
Steamboat (x) A Sailboat (y) = Faster (x,y)

Faster (Titanic , PondArrow)
{x/Titanic,y | PondArrow }
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Backward chaining example

Faster (Titanic, PondArrow) F1: Steamboat (Titanic)
F2: Sailboat (Mistral )
F3: RowBoaf PondArrow)

Steamboat (Titanic)

v

Sailboat (PondArrow) RowBoat(PondArrow)

X v

Sailboat (y) A RowBoat (z) = Faster (y,z)

Sailboat(Titanic)

Faster (Titanic , PondArrow)
{y/Titanic,z | PondArrow }
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Backward chaining example

F1: Steamboat (Titanic)
F2: Sailboat (Mistral)
F3: RowBoaf PondArrow)

Faster (Titanic, PondArrow)

Steamboat(Titanic)

\/ Fasten(Titanic, y)
Sailboat (PondArrow)  RowBoat(PondArrow)

X

Sailboat(Titanic)

Fasten(y, PondArrow)

Steamboat(Titanic)

v

Sailboat(Mistral)

Sailboat(Mistral) RowBoat (\P/ondA rrow)
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Backward chaining

Faster (Titanic, PondArrow)

y must be bound to
the same term

Steamboat(Titanic)
Faster(y, PondArrow)
Fasten(Titanic, y)
Sailboat( PondArrow)  RowBoat(PondArrow)

X

R1

Steamboat(Titanic)

v

Sailboat(Mistral)

‘/ RowBoat(PondArrow)
Sailboat(Mistral) ‘/
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Backward chaining

* The search tree: AND/OR tree
» Special search algorithms exits (including heuristics): AO, AO*

Faster (Titanic, PondArrow)

Steamboat (Titanic) Sailboat Titanic

‘/ X Faste(Titanic, y)
Sailboat(PondArrow)  RowBoat(PondArrow)

X

Fasten(y, PondArrow)

R1

Steamboat (Titanic)

v

Sailboat (Mistral)

Sailboat (Mistral) RowBoat (PondArrow)

v
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Knowledge-based system

Knowledge base

Inference engine

* Knowledge base:

— A set of sentences that describe the world in some formal
(representational) language (e.g. first-order logic)

— Domain specific knowledge
* Inference engine:

— A set of procedures that work upon the representational
language and can infer new facts or answer KB queries
(e.g. resolution algorithm, forward chaining)

— Domain independent
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Automated reasoning systems

Examples and main differences:
* Theorem provers

— Prove sentences in the first-order logic. Use inference rules,
resolution rule and resolution refutation.

* Deductive retrieval systems
— Systems based on rules (KBs in Horn form)

— Prove theorems or infer new assertions (forward, backward
chaining)

 Production systems <=
— Systems based on rules with actions in antecedents
— Forward chaining mode of operation

* Semantic networks <==

— Graphical representation of the world, objects are nodes in
the graphs, relations are various links
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Production systems

Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:

* A Rule base (includes rules)

* A Working memory (includes facts)

A special type of if — then rule
DPIANDyA... D, = Q,,0,,...,4,
» Antecedent: a conjunction of literals
— facts, statements in predicate logic
» Consequent: a conjunction of actions. An action can:
— ADD the fact to the KB (working memory)

— REMOVE the fact from the KB (consistent with logic ?)

— QUERY the user, etc ...
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Production systems

Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:

* A Rule base (includes rules)

* A Working memory (includes facts)

A special type of if — then rule
PiNDy,A... D, = a,,0,,...,4,
» Antecedent: a conjunction of literals
— facts, statements in predicate logic
* Consequent: a conjunction of actions. An action can:
— ADD the fact to the KB (working memory)

— REMOVE the fact from the KB «— !!! Different from logic

— QUERY the user, etc ...
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Production systems

Use forward chaining to do reasoning:

— If the antecedent of the rule is satisfied (rule is said to be
“active”) then its consequent can be executed (it is “fired”)

Problem: Two or more rules are active at the same time.
Which one to execute next?

R27  [Conditions R27| \J =—> | Actions R27
R105 |[Conditions R105] \J =—> | Actions R105

Strategy for selecting the rule to be fired from among possible
candidates is called conflict resolution

CS 1571 Intro to Al M. Hauskrecht

Production systems

Why is conflict resolution important? Or, why do we care
about the order?

Assume that we have two rules and the preconditions of both
are satisfied:

R1: A(x)AB(x)AC(y)= add D(x)
R2: A(x) A B(x)A E(z) = delete A(x)

What can happen if rules are triggered in different order?
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Production systems

Why is conflict resolution important? Or, Why do we care
about the order?

Assume that we have two rules and the preconditions of both
are satisfied:

R1: A(x)AB(x)AC(y) = add D(x)
R2: A(x) A B(x)A E(z) = delete A(x)

What can happen if rules are triggered in different order?

— If R1 goes first, R2 condition is still satisfied and we infer
D(x)

— If R2 goes first we may never infer D(x)
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Production systems

Problems with production systems:
— Additions and Deletions can change a set of active rules;

— If a rule contains variables testing all instances in which the
rule is active may require a large number of unifications.
— Conditions of many rules may overlap, thus requiring to
repeat the same unifications multiple times.
Solution: Rete algorithm
— gives more efficient solution for managing a set of active
rules and performing unifications
— Implemented in the system OPS-5 (used to implement

XCON — an expert system for configuration of DEC
computers)

CS 1571 Intro to Al M. Hauskrecht




Rete algorithm

* Assume a set of rules:
A(X)AB(x)AC(y) = add D(x)
A(x)AB(y)A D(x)= add E(x)
A(x) A B(x) A E(z) = delete A(x)

e And facts: A(1), A(2), B(2),B(3), B(4),C(5)
* Rete:

— Compiles the rules to a network that merges conditions of
multiple rules together (avoid repeats)

— Propagates valid unifications
— Reevaluates only changed conditions
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Rete algorithm. Network.

add E

add D

A1) A2) D(2)

delate A

Rules:  A(x)A B(x)AC(y) = add D(x)
A(X)AB(y)AD(x)= add E(x)
A(x) A B(x)A E(z) = delete A(x)

Facts:  A(1), 4(2), B(2), B(3), B(4),C(5)
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Conlflict resolution strategies

e Problem: Two or more rules are active at the same time.
Which one to execute next?

* Solutions:
— No duplication (do not execute the same rule twice)

— Recency. Rules referring to facts newly added to the
working memory take precedence

— Specificity. Rules that are more specific are preferred.

— Priority levels. Define priority of rules, actions based on
expert opinion. Have multiple priority levels such that the
higher priority rules fire first.
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Semantic network systems

+ Knowledge about the world described in terms of graphs.
Nodes correspond to:

— Concepts or objects in the domain.

Links to relations. Three kinds:

— Subset links (isa, part-of links)
— Member links (instance links)
— Function links.

Inheritance relation links

+ Can be transformed to the first-order logic language
 Graphical representation is often easier to work with
— better overall view on individual concepts and relations
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Semantic network. Example.

Water o SIEIO o Ship
isa isa '\is-part is-part
Ocean liner Oil tanker Engine Hull
4 4
iS'pM member member is-part
Swimming Queen Exxon Boiler
pool Mary Valdez

Inferred properties: Queen Mary is a ship
Queen Mary has a boiler
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