CS 1571 Introduction to AI Lecture 13 # **Propositional logic** #### Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square CS 1571 Intro to Al M. Hauskrecht # Logical inference problem ### Logical inference problem: - Given: - a knowledge base KB (a set of sentences) and - a sentence α (called a theorem), - How is the logical inference problem defined? CS 1571 Intro to Al ### Logical inference problem #### Logical inference problem: - · Given: - a knowledge base KB (a set of sentences) and - a sentence α (called a theorem), - Does a KB semantically entail α ? $KB \models \alpha$ In other words: In all interpretations in which sentences in the KB are true, is also α true? #### **Approaches:** • ' CS 1571 Intro to Al M. Hauskrecht ### Logical inference problem #### **Logical inference problem:** - · Given: - a knowledge base KB (a set of sentences) and - a sentence α (called a theorem), - Does a KB semantically entail α ? $KB = \alpha$ In other words: In all interpretations in which sentences in the KB are true, is also α true? #### **Approaches:** - Truth-table approach - Inference rules - · Conversion to SAT - Resolution refutation CS 1571 Intro to Al # Inference problem and satisfiability How is the logical inference problem related to the satisfiability problem? CS 1571 Intro to Al M. Hauskrecht # Inference problem and satisfiability How is the logical inference problem related to the satisfiability problem? $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is **unsatisfiable** CS 1571 Intro to Al ### Universal inference rule: Resolution rule # Sometimes inference rules can be combined into a single rule **Resolution rule** - sound inference rule that works for KB in CNF - It is complete for propositional logic (refutation complete) $$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$ | A | В | С | $A \vee B$ | $\neg B \lor C$ | $A \lor C$ | |--------------|--------------|--------------|-------------|-----------------|-------------| | False | False | False | False | True | False | | False | False | True | False | True | True | | False | True | False | True | False | False | | <u>False</u> | <u>True</u> | <u>True</u> | <u>True</u> | <u>True</u> | <u>True</u> | | <u>True</u> | <u>False</u> | <u>False</u> | <u>True</u> | <u>True</u> | <u>True</u> | | <u>True</u> | <u>False</u> | <u>True</u> | <u>True</u> | <u>True</u> | <u>True</u> | | True | True | False | True | False | True | | <u>True</u> | <u>True</u> | <u>True</u> | <u>True</u> | <u>True</u> | <u>True</u> | CS 1571 Intro to Al M. Hauskrecht ### **Resolution algorithm** #### Algorithm: - Convert KB to the CNF form; - Apply iteratively the resolution rule starting from KB, $\neg \alpha$ (in the CNF form) - · Stop when: - Contradiction (empty clause) is reached: - $A, \neg A \rightarrow \emptyset$ - proves entailment. - No more new sentences can be derived - disproves it. M. Hauskrecht CS 1571 Intro to Al # **Example. Resolution.** **KB**: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S #### Step 1. convert KB to CNF: - $P \wedge Q \longrightarrow P \wedge Q$ - $P \Rightarrow R \longrightarrow (\neg P \lor R)$ - $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$ **KB:** $$P Q (\neg P \lor R) (\neg Q \lor \neg R \lor S)$$ Step 2. Negate the theorem to prove it via refutation $$S \longrightarrow \neg S$$ Step 3. Run resolution on the set of clauses $$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$ CS 1571 Intro to Al M. Hauskrecht ### **Example. Resolution.** **KB:** $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S $$P \ Q \ (\neg P \lor R) \ (\neg Q \lor \neg R \lor S) \ \neg S$$ CS 1571 Intro to Al # **Example. Resolution.** **KB:** $$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$ **Theorem:** S CS 1571 Intro to Al M. Hauskrecht ### **Example. Resolution.** **KB:** $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S $$\begin{array}{cccc} P & Q & (\neg P \lor R) & (\neg Q \lor \neg R \lor S) & \neg S \\ \hline R & (\neg R \lor S) \end{array}$$ CS 1571 Intro to Al # **Example. Resolution.** **KB:** $$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$ **Theorem:** S CS 1571 Intro to Al M. Hauskrecht ### **Example. Resolution.** **KB:** $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S **Contradiction** → {} **Proved:** S CS 1571 Intro to Al ### **KB** in restricted forms If the sentences in the KB are restricted to some special forms some of the sound inference rules may become complete #### **Example:** Horn form (Horn normal form) $$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$ Can be written also as: $$(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$$ Resolution (or modus ponens) are sound and complete for inferences on propositional symbols in the HNF CS 1571 Intro to Al M. Hauskrecht ### **KB** in Horn form • Horn form: a clause with at most one positive literal $$(A \vee \neg B) \wedge (\neg A \vee \neg C \vee D)$$ - Note: Not all sentences in propositional logic can be converted into the Horn form - KB in Horn normal form: - Two types of propositional statements: • Rules $$(\neg B_1 \lor \neg B_2 \lor \dots \neg B_k \lor A)$$ $(\neg (B_1 \land B_2 \land \dots B_k) \lor A)$ \equiv $(B_1 \land B_2 \land \dots B_k \Rightarrow A)$ • Propositional symbols: **facts** B CS 1571 Intro to Al #### **KB** in Horn form - Application of the resolution rule: - Infers new facts from previous facts $$\frac{(A \vee \neg B), B}{A} \qquad \frac{(A \vee \neg B), \quad (B \vee \neg C)}{(A \vee C)}$$ - Resolution is sound and complete for inferences on propositional symbols for KB in the Horn normal form (clausal form) - Similarly, **modus ponens is sound and complete** when the HNF is written in the implicative form CS 1571 Intro to Al M. Hauskrecht ### Complexity of inferences for KBs in HNF **Question:** How efficient are the inferences in the HNF? - If we consider only inferences on propositional symbols - procedures linear in the size of the KB in the HNF exist. ### **Terminology:** - Size of a clause: the number of literals it contains. - Size of the KB in the HNF: the sum of the sizes of its elements. ### **Example:** $$A, B, (A \land B \Rightarrow C), (C \Rightarrow D), (C \Rightarrow E), (E \land F \Rightarrow G)$$ or $$A, B, (\neg A \lor \neg B \lor C), (\neg C \lor D), (\neg C \lor E), (\neg E \lor \neg F \lor G)$$ The size is: 12 CS 2740 Knowledge Representation How to do the inference? If the HNF (is in the clausal form) we can apply resolution. # Complexity of inferences for KBs in HNF #### **Features:** • Every resolution is a **positive unit resolution**; that is, a resolution in which **one clause is a positive unit clause** (i.e., a proposition symbol). #### **Features:** • At each resolution, the input clause which is not a unit clause is a logical consequence of the result of the resolution. (Thus, the input clause may be deleted upon completion of the resolution operation.) ### Complexity of inferences for KBs in HNF #### **Features:** • At each resolution, the input clause which is not a unit clause is a logical consequence of the result of the resolution. (Thus, the input clause may be deleted upon completion of the resolution operation.) CS 2740 Knowledge Representation #### **Features:** • Following this deletion, the size of the KB (the sum of the lengths of the remaining clauses) is one less than it was before the operation.) ### **Complexity of inferences for KBs in HNF** #### **Features:** • If n is the size of the KB, then at most n positive unit resolutions may be performed on it. #### A linear time resolution algorithm: - The number of positive unit resolutions is limited to the size of the formula (n) - But to assure overall linear time we need to access each proposition in a constant time: - Data structures indexed by proposition names may be accessed in constant time. (This is possible if the proposition names are number in a range (e.g., 1..n), so that array lookup is the access operation. - If propositions are accessed by name, then a symbol table is necessary, and the algorithm will run in time $O(n \cdot log(n))$. CS 2740 Knowledge Representation M. Hauskrecht ### Forward and backward chaining Two inference procedures based on **modus ponens** for **Horn KBs**: Forward chaining **Idea:** Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied. Backward chaining (goal reduction) **Idea:** To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively. Both procedures are complete for KBs in the Horn form !!! CS 1571 Intro to Al # Forward chaining example Forward chaining **Idea:** Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied. Assume the KB with the following rules and facts: KB: R1: $A \wedge B \Rightarrow C$ R2: $C \wedge D \Rightarrow E$ R3: $C \wedge F \Rightarrow G$ F1: A F2: *B* F3: *D* Theorem: E CS 1571 Intro to Al M. Hauskrecht # Forward chaining example Theorem: E KB: R1: $A \wedge B \Rightarrow C$ R2: $C \wedge D \Rightarrow E$ R3: $C \wedge F \Rightarrow G$ F1: A F2: *B* F3: *D* CS 1571 Intro to Al # Forward chaining example Theorem: E KB: R1: $A \wedge B \Rightarrow C$ R2: $C \wedge D \Rightarrow E$ R3: $C \wedge F \Rightarrow G$ F1: A F2: *B* F3: *D* Rule R1 is satisfied. F4: *C* CS 1571 Intro to Al M. Hauskrecht # Forward chaining example Theorem: E KB: R1: $A \wedge B \Rightarrow C$ R2: $C \wedge D \Rightarrow E$ R3: $C \wedge F \Rightarrow G$ F1: A F2: *B* F3: *D* Rule R1 is satisfied. F4: *C* Rule R2 is satisfied. F5: *E* CS 1571 Intro to Al # Forward chaining - Efficient implementation: linear in the size of the KB - Example: $$P \Rightarrow Q$$ $$L \land M \Rightarrow P$$ $$B \land L \Rightarrow M$$ $$A \land P \Rightarrow L$$ $$A \land B \Rightarrow L$$ $$A$$ CS 2740 Knowledge Representation M. Hauskrecht # Forward chaining Runs in time linear in the number of literals in the Horn formulae ``` function PL-FC-Entails?(KB,q) returns true or false local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true while agenda is not empty do p \leftarrow \text{POP}(agenda) unless inferred[p] do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do if \text{Hean}[c] = q then return true \text{PUSH}(\text{Head}[c], agenda) return false ``` CS 2740 Knowledge Representation • $$P \Rightarrow Q$$ $$L \wedge M \Rightarrow P$$ $$B \wedge L \Longrightarrow M$$ $$A \wedge P \Rightarrow L$$ $$A \wedge B \Rightarrow L$$ \boldsymbol{A} B CS 2740 Knowledge Representation M. Hauskrecht # Forward chaining $$P \Rightarrow Q$$ $$L \wedge M \Rightarrow P$$ $$B \wedge L \Rightarrow M$$ $$A \wedge P \Longrightarrow L$$ $$A \wedge B \Longrightarrow L$$ \boldsymbol{A} В CS 2740 Knowledge Representation # Forward chaining • $$P \Rightarrow Q$$ $$L \land M \Rightarrow P$$ $$B \land L \Rightarrow M$$ $$A \land P \Rightarrow L$$ $$A \land B \Rightarrow L$$ $$A$$ CS 2740 Knowledge Representation M. Hauskrecht # **Backward chaining example** KB: R1: $A \wedge B \Rightarrow C$ R2: $C \wedge D \Rightarrow E$ R3: $C \wedge F \Rightarrow G$ F1: A F2: *B* F3: *D* - Backward chaining is more focused: - tries to prove the theorem only CS 1571 Intro to Al # **Backward chaining example** - KB: R1: $A \wedge B \Rightarrow C$ - R2: $C \wedge D \Rightarrow E$ - R3: $C \wedge F \Rightarrow G$ - F1: A - F2: *B* - F3: *D* - Backward chaining is more focused: - tries to prove the theorem only CS 1571 Intro to Al M. Hauskrecht # **Backward chaining** • $$P \Rightarrow Q \qquad \longleftarrow$$ $$L \wedge M \Rightarrow P$$ $$B \wedge L \Longrightarrow M$$ $$A \wedge P \Longrightarrow L$$ $$A \wedge B \Rightarrow L$$ $$A \longleftarrow$$ B CS 2740 Knowledge Representation CS 2740 Knowledge Representation M. Hauskrecht # **Backward chaining** CS 2740 Knowledge Representation CS 2740 Knowledge Representation M. Hauskrecht # **Backward chaining** CS 2740 Knowledge Representation CS 2740 Knowledge Representation M. Hauskrecht # **Backward chaining** $$A \wedge P \Rightarrow L$$ $$A \wedge B \Rightarrow L \longleftarrow$$ $$A \leftarrow$$ В CS 2740 Knowledge Representation CS 2740 Knowledge Representation M. Hauskrecht ### Forward vs Backward chaining - FC is data-driven, automatic, unconscious processing, - e.g., object recognition, routine decisions - May do lots of work that is irrelevant to the goal - BC is goal-driven, appropriate for problem-solving, - e.g., Where are my keys? How do I get into a PhD program? - Complexity of BC can be much less than linear in size of KB CS 2740 Knowledge Representation # KB agents based on propositional logic - Propositional logic allows us to build knowledge-based agents capable of answering queries about the world by inferring new facts from the known ones - Example: an agent for diagnosis of a bacterial disease Facts: The stain of the organism is gram-positive The growth conformation of the organism is chains **Rules:** (If) The stain of the organism is gram-positive \land The morphology of the organism is coccus \triangle The growth conformation of the organism is chains (Then) \Rightarrow The identity of the organism is streptococcus CS 1571 Intro to Al M. Hauskrecht # First order logic CS 1571 Intro to Al ### Limitations of propositional logic The world we want to represent and reason about consists of a number of objects with variety of properties and relations among them #### **Propositional logic:** • Represents statements about the world without reflecting this structure and without modeling these entities explicitly #### **Consequence:** - some knowledge is hard or impossible to encode in the propositional logic. - Two cases that are hard to represent: - Statements about similar objects, relations - Statements referring to groups of objects. CS 1571 Intro to Al M. Hauskrecht ### Limitations of propositional logic - Statements about similar objects and relations needs to be enumerated - Example: Seniority of people domain **Assume we have**: John is older than Mary Mary is older than Paul **To derive** *John is older than Paul* we need: John is older than Mary \land Mary is older than Paul \Rightarrow John is older than Paul Assume we add another fact: Jane is older than Mary **To derive** *Jane is older than Paul* we need: Jane is older than Mary \land Mary is older than Paul \Rightarrow Jane is older than Paul What is the problem? CS 1571 Intro to Al ### Limitations of propositional logic - Statements about similar objects and relations needs to be enumerated - Example: Seniority of people domain **Assume we have**: John is older than Mary Mary is older than Paul **To derive** *John is older than Paul* we need: John is older than Mary \wedge Mary is older than Paul \Rightarrow John is older than Paul **Assume we add another fact**: Jane is older than Mary **To derive** *Jane is older than Paul* we need: Jane is older than Mary ∧ Mary is older than Paul \Rightarrow Jane is older than Paul **Problem:** KB grows large CS 1571 Intro to Al M. Hauskrecht ### Limitations of propositional logic - Statements about similar objects and relations needs to be enumerated - Example: Seniority of people domain For inferences we need: John is older than Mary \wedge Mary is older than Paul \Rightarrow John is older than Paul Jane is older than Mary ∧ Mary is older than Paul - \Rightarrow Jane is older than Paul - **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences - Possible solution: ?? ### Limitations of propositional logic - Statements about similar objects and relations needs to be enumerated - Example: Seniority of people domain For inferences we need: John is older than Mary A Mary is older than Paul \Rightarrow John is older than Paul Jane is older than Mary ∧ Mary is older than Paul \Rightarrow Jane is older than Paul - **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences - Possible solution: introduce variables <u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u> \Rightarrow **PersA** is older than **PersC** CS 1571 Intro to Al M. Hauskrecht ### Limitations of propositional logic - Statements referring to groups of objects require exhaustive enumeration of objects - Example: Assume we want to express Every student likes vacation Doing this in propositional logic would require to include statements about every student John likes vacation ∧ *Mary likes vacation* ∧ Ann likes vacation . . . Solution: Allow quantification in statements CS 1571 Intro to Al # First-order logic (FOL) - More expressive than propositional logic - Eliminates deficiencies of PL by: - Representing objects, their properties, relations and statements about them; - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately CS 1571 Intro to Al