CS 1571 Introduction to AI Lecture 12

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

CS 1571 Intro to Al

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside, etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$

are sentences

Semantic: propositional symbols

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False V(Light in the room is on, I) = ?

 $V(It \ rains \ outside, \ I) = ?$

 $V(Light in the room is on \land It rains outside, I) = ?$

CS 1571 Intro to Al

M. Hauskrecht

Semantic: propositional symbols

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False

V(Light in the room is on, I) = True

 $V(It \ rains \ outside, \ I) = False$

 $V(Light\ in\ the\ room\ is\ on\ \land It\ rains\ outside\ ,\ I)=False$

CS 1571 Intro to Al

Logical inference problem

Logical inference problem:

- · Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

CS 1571 Intro to Al

M. Hauskrecht

Sound and complete inference.

Inference is a process by which conclusions are reached.

• We want to implement the inference process on a computer !!

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_{\alpha} \alpha$

Properties of the inference procedure in terms of entailment

- Soundness: An inference procedure is sound
- ?
- Completeness: An inference procedure is complete
- ?

CS 1571 Intro to Al

Sound and complete inference.

Inference is a process by which conclusions are reached.

• We want to implement the inference process on a computer !!

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

• Soundness: An inference procedure is sound

If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

Completeness: An inference procedure is complete

If $KB \models \alpha$ then it is true that $KB \models \alpha$

CS 1571 Intro to Al

M. Hauskrecht

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB \models \alpha$$
 ?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to Al

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:			KB		α	
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
		True False True False	True True	True False False True	True False False False	

CS 1571 Intro to Al

M. Hauskrecht

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:		KB		α		
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$	
	True	True	True	True	True	/
	True	False	True	False	False	
	False	True	True	False	False	
	False	False	False	True	False	

CS 1571 Intro to Al

Limitations of the truth table approach.

$$KB = \alpha$$
?

What is the computational complexity of the truth table approach?

Exponential in the number of the proposition symbols

 2^n Rows in the table has to be filled

But typically only for a small subset of rows the KB is true

CS 1571 Intro to Al

M. Hauskrecht

Limitations of the truth table approach.

$$KB \mid = \alpha$$
 ?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

CS 1571 Intro to Al

Limitation of the truth table approach.

$$KB = \alpha$$
?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true only on a small subset interpretations

How to make the process more efficient?

CS 1571 Intro to Al

M. Hauskrecht

Inference rules approach

$$KB \mid = \alpha$$
 ?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

How to make the process more efficient?

Solution: check only entries for which KB is True.

This is the idea behind the inference rules approach

Inference rules:

- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

CS 1571 Intro to Al

Inference rules for logic

Modus ponens

$$A \Rightarrow B$$
, A premise conclusion

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is **sound.**
 - We can prove this through the truth table.

A	В	$A \Rightarrow B$
False	False	True
False	True	True
True	False	False
True	True	True

CS 1571 Intro to A

M. Hauskrecht

Inference rules for logic

And-elimination

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

• And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

• Or-introduction

$$\frac{A_i}{A_1 \vee A_2 \vee \dots A_i \vee A_n}$$

CS 1571 Intro to Al

Inference rules for logic

• Elimination of double negation
$$\frac{\neg \neg A}{A}$$

$$\frac{A \vee B, \quad \neg A}{B}$$

A special case of

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

All of the above inference rules are sound. We can prove this through the truth table, similarly to the modus ponens case.

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$ 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem:** S

- **1.** *P* ∧ *Q*
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *F*

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** R

From 2,4 and Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- **6.** Q

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- **1.** *P* ∧ *Q*
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- **6.** Q
- 7. $(Q \wedge R)$

From 5,6 and And-introduction

$$\frac{A_1, A_2, A_n}{A_1 \wedge A_2 \wedge A_n}$$

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- 7. $(Q \wedge R)$

- $\frac{A \Rightarrow B, \quad A}{B}$
- From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- From 1 and And-elim
- **5.** *R* From 2,4 and Modus ponens
- 6. Q From 1 and And-elim
- 7. $(Q \wedge R)$ From 5,6 and And-introduction
- **8.** S From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to Al

Inference rules

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible inference rules to be applied next

Looks familiar?

CS 1571 Intro to Al

M. Hauskrecht

Logic inferences and search

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible rules to can be applied next

Looks familiar?

This is an instance of a search problem:

Truth table method (from the search perspective):

blind enumeration and checking

CS 1571 Intro to Al

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- Initial state: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

CS 1571 Intro to Al

M. Hauskrecht

Normal forms

Sentences in the propositional logic can be transformed into one of the normal forms. This can simplify the inferences.

Normal forms used:

Conjunctive normal form (CNF)

• conjunction of clauses (clauses include disjunctions of literals)

$$(A \lor B) \land (\neg A \lor \neg C \lor D)$$

Disjunctive normal form (DNF)

• Disjunction of terms (terms include conjunction of literals)

$$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$$

CS 1571 Intro to Al

Conversion to a CNF

Assume: $\neg (A \Rightarrow B) \lor (C \Rightarrow A)$

1. Eliminate \Rightarrow , \Leftrightarrow

$$\neg(\neg A \lor B) \lor (\neg C \lor A)$$

2. Reduce the scope of signs through DeMorgan Laws and double negation

$$(A \land \neg B) \lor (\neg C \lor A)$$

3. Convert to CNF using the associative and distributive laws

$$(A \lor \neg C \lor A) \land (\neg B \lor \neg C \lor A)$$

and

$$(A \lor \neg C) \land (\neg B \lor \neg C \lor A)$$

CS 1571 Intro to Al

M. Hauskrecht

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (P, R, T, S)
 - Values: True, False
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- A logical inference problem can be solved as a CSP problem. Why?

CS 1571 Intro to Al

Inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem

CS 1571 Intro to Al

M. Hauskrecht

Universal inference rule: Resolution rule

Sometimes inference rules can be combined into a single rule Resolution rule

- · sound inference rule that works for CNF
- It is complete for propositional logic (refutation complete)

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

A	В	C	$A \vee B$	$\neg B \lor C$	$A \lor C$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

CS 1571 Intro to Al

Universal rule: Resolution.

Initial obstacle:

 Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:

We know: $(A \wedge B)$ We want to show: $(A \vee B)$

Resolution rule fails to derive it (incomplete ??)

A trick to make things work:

- proof by contradiction
 - Disproving: KB, $\neg \alpha$
 - Proves the entailment $KB = \alpha$

CS 1571 Intro to Al

M. Hauskrecht

Resolution algorithm

Algorithm:

- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from KB, $\neg \alpha$ (in CNF form)
- Stop when:
 - Contradiction (empty clause) is reached:
 - $A, \neg A \rightarrow Q$
 - proves entailment.
 - No more new sentences can be derived
 - disproves it.

CS 1571 Intro to Al

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

KB:
$$P Q (\neg P \lor R) (\neg Q \lor \neg R \lor S)$$

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

$$P \ O \ (\neg P \lor R) \ (\neg O \lor \neg R \lor S) \ \neg S$$

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

$$\begin{array}{cccc}
P & Q & (\neg P \lor R) & (\neg Q \lor \neg R \lor S) & \neg S \\
\hline
R & (\neg R \lor S)
\end{array}$$

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

Contradiction → {

Proved: S

CS 1571 Intro to Al