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Propositional logic   
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Logic
A formal language for expressing knowledge and ways of 

reasoning.
Logic is defined by:
• A set of sentences

– A sentence is constructed from a set of primitives according 
to syntax rules.

• A set of interpretations
– An interpretation gives a semantic to primitives. It associates 

primitives with values. 
• The valuation (meaning) function V

– Assigns a value (typically the truth value) to a given  
sentence under some interpretation

interpretasentence: ×V },{tion FalseTrue→
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Propositional logic. Syntax

• Formally propositional logic P:
– Is defined by Syntax+interpretation+semantics of P

Syntax:
• Symbols (alphabet) in P:

– Constants: True, False
– Propositional symbols

Examples: 
• P
• Pitt is located in the Oakland section of Pittsburgh.,
• It rains outside,    etc.

– A set of connectives:
⇔⇒∨∧¬ ,,,,
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Propositional logic. Syntax

Sentences in the propositional logic:
• Atomic sentences:

– Constructed from constants and propositional symbols
– True, False   are (atomic) sentences
– or Light in the room is on, It rains outside are 

(atomic) sentences 
• Composite sentences:

– Constructed from valid sentences via connectives
– If              are sentences then 

or
are sentences        

QP ,

BA ,
)( BA ∧ )( BA ∨A¬ )( BA ⇔)( BA ⇒

)()( BABA ¬∨∧∨
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Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific 
interpretation is given by its interpretation 

I: Light in the room is on -> True, It rains outside -> False

V(Light in the room is on, I) = ?

V( It rains outside, I) = ?

V(Light in the room is on ∧ It rains outside , I) = ?
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Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific 
interpretation is given by its interpretation 

I: Light in the room is on -> True, It rains outside -> False

V(Light in the room is on, I) = True

V( It rains outside, I) = False

V(Light in the room is on ∧ It rains outside , I) = False
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Logical inference problem

Logical inference problem:
• Given:

– a knowledge base KB (a set of sentences) and 
– a sentence        (called a theorem), 

• Does a KB semantically entail ?
In other words:  In all interpretations in which sentences in the 

KB are true, is also        true?

α=|KB ?
α

α

α
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Sound and complete inference.

Inference is a process by which conclusions are reached. 
• We want to implement the inference process on a computer !!

Assume an inference procedure i that 
• derives a sentence       from  the KB :

Properties of the inference procedure in terms of entailment
• Soundness: An inference procedure is sound
• ?

• Completeness: An inference procedure is complete
• ?

α
i

KBα



M. HauskrechtCS 1571 Intro to AI

Sound and complete inference.

Inference is a process by which conclusions are reached. 
• We want to implement the inference process on a computer !!

Assume an inference procedure i that 
• derives a sentence       from  the KB :

Properties of the inference procedure in terms of entailment
• Soundness: An inference procedure is sound

• Completeness: An inference procedure is complete

α
i

KBα

α=|KBα
i

KBIf                      then it is true that

If                      then it is true thatα=|KB α
i

KB
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Solving logical inference problem

In the following:
How to design the procedure that answers: 

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem

– Resolution-refutation 

α=|KB ?
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α

Truth-table approach
Problem:
• We need to check all possible interpretations for which the KB is 

true (models of KB) whether      is true for each of them
Truth table:
• enumerates truth values of  sentences for all possible interpretations 

(assignments of True/False to propositional symbols)

Example: 

α

P Q QP ∨

True True True
True False
False
False False False

True
TrueTrue

True

False
False
False

α=|KB ?

QP ⇔

True

False
False

True

KB
QQP ∧¬∨ )(
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α

Truth-table approach
Problem:
• We need to check all possible interpretations for which the KB is 

true (models of KB) whether      is true for each of them
Truth table:
• enumerates truth values of  sentences for all possible 

interpretations (assignments of True/False to propositional 
symbols)

Example: 

α

P Q QP ∨

True True True
True False
False
False False False

True
TrueTrue

True

False
False
False

α=|KB ?

QP ⇔

True

False
False

True

KB
QQP ∧¬∨ )(
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Limitations of the truth table approach.

What is the computational complexity of the truth table 
approach? 

Exponential in the number of the proposition symbols

But typically only for a small subset of rows the KB is true

α=|KB ?

n2 Rows in the table has to be filled
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Limitations of the truth table approach.

Problem with the truth table approach:
– the truth table is exponential in the number of 

propositional symbols (we checked all assignments)
– KB is true on only a smaller subset

α=|KB ?
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Limitation of the truth table approach.

Problem with the truth table approach:
• the truth table is exponential in the number of propositional 

symbols (we checked all assignments)
• KB is true only on a small subset interpretations
How to make the process more efficient?  

α=|KB ?
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Inference rules approach

Problem with the truth table approach:
• the truth table is exponential in the number of propositional 

symbols (we checked all assignments)
• KB is true on only a smaller subset
How to make the process more efficient?
Solution: check only entries for which KB is True. 
This is the idea behind the inference rules approach

Inference rules:
• Represent sound inference patterns repeated in inferences
• Can be used to generate new (sound) sentences from the 

existing ones

α=|KB ?
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Inference rules for logic

• Modus ponens

• If both sentences in the premise are true then conclusion is true.
• The modus ponens inference rule is sound.

– We can prove this through the truth table.

B
ABA ,⇒ premise

conclusion

BA ⇒A B
False False True
False
True
True

True True

True
False False

True
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Inference rules for logic

• And-elimination

• And-introduction

• Or-introduction

i

n

A
AAA ∧∧ 21

n

n

AAA
AAA

∧∧ 21

21 ,,

ni

i

AAAA
A

∨∨∨ K21
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Inference rules for logic

• Elimination of double negation

• Unit resolution

• Resolution

• All of the above inference rules are sound. We can prove this 
through the truth table, similarly to the modus ponens case.

A
A¬¬

B
ABA ¬∨ ,

CA
CBBA

∨
∨¬∨ ,

A special
case of 
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.

QP ∧
RP ⇒

SRQ ⇒∧ )(

QP ∧ RP ⇒ SRQ ⇒∧ )( S
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. From 1 and And-elim

QP ∧
RP ⇒

SRQ ⇒∧ )(
P

QP ∧ RP ⇒ SRQ ⇒∧ )( S

i

n

A
AAA ∧∧ 21
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. 
5. From 2,4 and Modus ponens

QP ∧
RP ⇒

SRQ ⇒∧ )(
P
R

QP ∧ RP ⇒ SRQ ⇒∧ )( S

B
ABA ,⇒
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. 
5. 
6. From 1 and And-elim

QP ∧
RP ⇒

SRQ ⇒∧ )(
P
R
Q

QP ∧ RP ⇒ SRQ ⇒∧ )( S

i

n

A
AAA ∧∧ 21
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. 
5. 
6.
7. From 5,6 and And-introduction

QP ∧
RP ⇒

SRQ ⇒∧ )(
P
R
Q

)( RQ ∧

QP ∧ RP ⇒ SRQ ⇒∧ )( S

n

n

AAA
AAA

∧∧ 21

21 ,,
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. 
5. 
6.
7.
8. From 7,3 and Modus ponens

QP ∧
RP ⇒

SRQ ⇒∧ )(

S

P
R
Q

)( RQ ∧

QP ∧ RP ⇒ SRQ ⇒∧ )( S

SProved:

B
ABA ,⇒
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. From 1 and And-elim
5. From 2,4 and Modus ponens
6. From 1 and And-elim
7. From 5,6 and And-introduction
8. From 7,3 and Modus ponens

QP ∧
RP ⇒

SRQ ⇒∧ )(

S

P
R
Q

)( RQ ∧

QP ∧ RP ⇒ SRQ ⇒∧ )( S

SProved:
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Inference rules 
• To show that  theorem          holds for a KB 

– we may need to apply a number of sound inference rules
Problem: many possible inference rules to be applied next

Looks familiar?

α

Q
PQP ,⇒

S
RSR ,⇒

QP ⇒

SR ⇒

R
P

…

?
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Logic inferences and search

• To show that  theorem          holds for a KB 
– we may need to apply a number of sound inference rules

Problem: many possible rules to can be applied next
Looks familiar?

This is an instance of a search problem: 
Truth table method (from the search perspective):

– blind enumeration and checking

α

Q
PQP ,⇒

S
RSR ,⇒

QP ⇒

SR ⇒

R
P

…

?
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Logic inferences and search
Inference rule method as a search problem:
• State: a set of sentences that are known to be true
• Initial state: a set of sentences in the KB
• Operators: applications of inference rules 

– Allow us to add new sound sentences to old ones
• Goal state: a theorem        is derived from KB   

Logic inference: 
• Proof: A sequence of sentences that are immediate 

consequences of  applied inference rules
• Theorem proving: process of finding a proof  of theorem

α

M. HauskrechtCS 1571 Intro to AI

Normal forms

Sentences in the propositional logic can be transformed into one of 
the normal forms. This can simplify the inferences.

Normal forms used: 
Conjunctive normal form (CNF)
• conjunction of clauses (clauses include disjunctions of literals)

Disjunctive normal form (DNF)
• Disjunction of terms (terms include conjunction of literals)

)()( DCABA ∨¬∨¬∧∨

)()()( DCCABA ¬∧∨∧¬∨¬∧
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Conversion to a CNF

Assume:
1. Eliminate

2. Reduce the scope of signs through DeMorgan Laws and 
double negation

3. Convert to CNF using the associative and distributive laws

and

)()( ACBA ∨¬∨∨¬¬

)()( ACBA ∨¬∨¬∧

)()( ACBA ⇒∨⇒¬

)()( ACBACA ∨¬∨¬∧∨¬∨

)()( ACBCA ∨¬∨¬∧¬∨

⇔⇒ ,
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Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form 
(CNF) is satisfiable (I.e. can evaluate to true)

It is an instance of a constraint satisfaction problem:
• Variables:

– Propositional symbols (P, R, T, S)
– Values: True, False

• Constraints:
– Every conjunct must evaluate to true, at least one of the 

literals must evaluate to true
• A logical inference problem can be solved as a CSP 

problem. Why?

K)()()( TQPSRPRQP ¬∨∨¬∧∨¬∨¬∧¬∨∨
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Inference problem and satisfiability

Inference problem:
• we want to show that the sentence       is entailed by KB 
Satisfiability:
• The sentence is satisfiable if there is some assignment 

(interpretation) under which the sentence evaluates to true

Connection:

Consequences:   
• inference problem is NP-complete
• programs for solving the SAT problem can be used to solve 

the inference problem

α

α=|KB if and only if 
)( α¬∧KB is unsatisfiable
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Universal inference rule: Resolution rule

Sometimes inference rules can be combined into a single rule
Resolution rule
• sound inference rule that works for CNF
• It is complete for propositional logic (refutation complete)

CB
CABA

∨
∨¬∨ ,

A CB BA ∨ CB ∨¬ CA ∨
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Universal rule: Resolution.

Initial obstacle:
• Repeated application of the resolution rule to a KB in CNF 

may fail to derive new valid sentences
Example:

A trick to make things work:
• proof by contradiction

– Disproving:
– Proves the entailment                        

α¬,KB

)( BA∧We know: We want to show: )( BA∨

Resolution rule fails to derive it (incomplete ??)

α=|KB
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Resolution algorithm

Algorithm: 
• Convert KB to the CNF form;
• Apply iteratively the resolution rule starting from 

(in CNF form)
• Stop when:

– Contradiction (empty clause) is reached:
•
• proves entailment.           

– No more new sentences can be derived 
• disproves it.

α¬,KB

OAA →¬,



M. HauskrechtCS 1571 Intro to AI

Example. Resolution.
KB: Theorem:

Step 1. convert KB to CNF: 
•
•
•

KB:
Step 2. Negate the theorem to prove it via refutation

Step 3. Run resolution on the set of clauses                    

QP ∧

S

P Q

])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

QP ∧
RP ⇒ )( RP ∨¬

SRQ ⇒∧ )( )( SRQ ∨¬∨¬

)( RP ∨¬ )( SRQ ∨¬∨¬

S¬

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬
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Example. Resolution.
KB: Theorem:])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬
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Example. Resolution.
KB: Theorem:])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬

R
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Example. Resolution.
KB: Theorem:])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬

R )( SR ∨¬
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Example. Resolution.
KB: Theorem:

S

])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬

R )( SR ∨¬
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Example. Resolution.
KB: Theorem:

S

])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

{}

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬

R )( SR ∨¬

Contradiction SProved:


