CS 1571 Introduction to AI Review

Midterm review

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Introduction to AI

Search

- Basic definition of the search problem
 - Search space, operators, initial state, goal condition
- Formulation of a problem:
 - We have some control over the complexity of the search space size
- Two types:
 - Path vs. configuration search

Search

- Methods for searching the search space:
- · Search trace captured by the search tree
- Search methods properties:
 - Completeness, Optimality, Space and time complexity.
- Complexities
 - measured in terms of a branching factor (b), depth of the optimal solution (d), maximum depth of the state space (m)

CS 1571 Introduction to AI

Search

- Uninformed methods:
 - Breadth first search, Depth first search, Iterative deepening, Bi-directional search, Uniform cost search (for the weighted path search)
- Informed methods:
 - **Heuristic function** (h): potential of a state to reach the goal
 - Evaluation function (f): desirability of a state to be expanded next
 - Best first search:
 - Greedy f(n) = h(n)
 - A*: f(n) = g(n) + h(n)

the role of admissible heuristics, optimality

Search

- Constraint satisfaction problem (CSP)
 - Variables, constraints on values (reflect the goal)
 - Formulation of a CSP as search
 - Methods and heuristics for CSP search
 - Backtracking, constraint propagation, most constrained variable, least constrained value
- Complex configuration searches. Use iterative algorithms:
 - Methods: Hill climbing, Simulated annealing, Genetic algorithms
 - Advantage: memory !! Useful for very large optimization problems.

CS 1571 Introduction to AI

Search

- Adversarial search (game playing)
 - Specifics of a game search, game problem formulation
 - rational opponent
- · Algorithms:
 - Minimax algorithm
 - Complexity bottleneck for large games
 - Alpha-Beta pruning: prunes branches not affecting the decision of players
 - Cutoff of the search tree and heuristics

KR and logic

- Knowledge representation:
 - Syntax (how sentences are build), Semantics (meaning of sentences), Computational aspect (how sentences are manipulated)
- Logic:
 - A formal language for expressing knowledge and ways of reasoning
 - Three components:
 - A set of sentences
 - A set of interpretations
 - The valuation (meaning) function

CS 1571 Introduction to AI

Propositional logic

- A language for symbolic reasoning
- Language:
 - Syntax, Semantics
- **Satisfiability** of a sentence: at least one interpretation under which the sentence can evaluate to *True*.
- Entailment:

 $KB \models \alpha$ is true in all worlds in which KB is true

- Inference procedure
 - Soundness If $KB \vdash_i \alpha$ then $KB \models \alpha$
 - Completeness If $KB \models \alpha$ then $KB \models_i \alpha$

Propositional logic

- Logical inference problem: $KB = \alpha$?
 - Does KB entail the sentence α ?
- Logical inference problem for the propositional logic is **decidable**.
 - A procedure (program) that stops in finite time exists
- · Approaches:
 - Truth table approach
 - Inference rule approach
 - Resolution refutation

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

• Normal forms: DNF, CNF, Horn NF (conversions)

CS 1571 Introduction to AI

First order logic

- Deficiencies of propositional logic
- First order logic (FOL):

allows us to represent objects, their properties, relations and statements about them

- Variables, predicates, functions, quantifiers
- Syntax and semantics of the sentences in FOL
- Translation of English sentences to FOL

CSP

- Constraint propagation
- Congruency network from the homework

CSP

Arc consistency

 $w= \{1,5,9\}$ & $u= \{0,3,6,9\}$ w= 1 → no valid value for u exists (u should be either 1,4,7} Hence $w \ne 1$ → $w= \{5,9\}$

CS 1571 Introduction to AI

CSP

Arc consistency

 $w = \{5,9\}$ & $u = \{0,3,6,9\}$

w= 5 \rightarrow no valid value for u exists (u should be either 2,5,8} Hence w \neq 5 \rightarrow w= {9}

 $w= \{9\}$ & $u=\{0,3,6,9\}$ $w= 9 \rightarrow$ consistent with the remaining u values Hence $w= \{9\}$

Arc consistency stops