CS 1571 Introduction to AI Lecture 9

Finding optimal configurations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Search for the optimal configuration

Constrain satisfaction problem:

Objective: find a configuration that satisfies all constraints

Optimal configuration problem:

Objective: find the best configuration

The quality of a configuration: is defined by some quality measure that reflects our preference towards each configuration (or state)

Our goal: optimize the configuration according to the quality measure also referred to as objective function

CS 1571 Intro to Al

Search for the optimal configuration

If the space of configurations we search among is

- Discrete or finite
 - then it is a combinatorial optimization problem
- Continuous
 - then it is a parametric optimization problem

In the following we cover with combinatorial optimization problems

Parametric optimization will covered next lecture.

CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

Problem:

• A graph with distances

• Goal: find the shortest tour which visits every city once and returns to the start

An example of a valid tour: ABCDEF

CS 1571 Intro to Al

Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem?

CS 1571 Intro to Al

M. Hauskrecht

Example: N queens

- A CSP problem
- Is it possible to formulate the problem as an optimal configuration search problem? Yes.
- The quality of a configuration in a CSP can be measured by the number of violated constraints
- Solving: minimize the number of constraint violations

of violations =3

of violations =1

of violations =0

CS 1571 Intro to Al

Iterative optimization methods

- Searching systematically for the best configuration with the DFS may not be the best solution
- Worst case running time:
 - Exponential in the number of variables
- Solutions to **large 'optimal' configuration** problems are often found using iterative optimization methods
- Methods:
 - Hill climbing
 - Simulated Annealing
 - Genetic algorithms

CS 1571 Intro to Al

M. Hauskrecht

Iterative optimization methods

Properties:

- Search the space of "complete" configurations
- Take advantage of local moves
 - Operators make "local" changes to "complete" configurations
- Keep track of just one state (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!

CS 1571 Intro to Al

Example: N-queens

- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

"Local" operator for generating the next state:

- divide the existing tour into two parts,
- reconnect the two parts in the opposite order

Example: Traveling salesman problem

"Local" operator:

generates the next configuration (state)

CS 1571 Intro to AI

M. Hauskrecht

Searching the configuration space

Search algorithms

• keep only one configuration (the current configuration)

• How to decide about which operator to apply?

CS 1571 Intro to Al

Search algorithms

Two strategies to choose the configuration (state) to be visited next:

- Hill climbing
- Simulated annealing
- Later: Extensions to multiple current states:
 - Genetic algorithms
- Note: Maximization is inverse of the minimization

$$\min f(X) \Leftrightarrow \max \left[-f(X) \right]$$

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the

CS 1571 Intro to Al

Hill climbing

- Always choose the next best successor state
- Stop when no improvement possible

```
function HILL-CLIMBING(problem) returns a solution state inputs: problem, a problem static: current, a node next, a node

current← MAKE-NODE(INITIAL-STATE[problem]) loop do

next← a highest-valued successor of current if VALUE[next] < VALUE[current] then return current current← next end
```

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

• Look around at states in the local neighborhood and choose the one with the best value

What can go wrong?

CS 1571 Intro to Al

• Hill climbing can get trapped in the local optimum

What can go wrong?

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

• Hill climbing can get clueless on plateaus

CS 1571 Intro to Al

Hill climbing and n-queens

- The quality of a configuration is given by the number of constraints violated
- Then: Hill climbing reduces the number of constraints
- Min-conflict strategy (heuristic):
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints

Success !! But not always!!! The local optima problem!!!

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

- Permits "bad" moves to states with lower value, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)

CS 1571 Intro to Al

Simulated annealing algorithm

Defines the probability of making a move:

- The probability of moving into a state with a higher value is 1
- The probability of moving into a state with a lower value is $p(Accept\ NEXT) = e^{\Delta E/T} \quad \text{where} \qquad \Delta E = E_{NEXT} E_{CURRENT}$
 - The probability is:
 - Proportional to the energy difference

CS 1571 Intro to Al

Simulated annealing algorithm

The probability of moving into a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, a mapping from time to "temperature" static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps
```

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$ for $t \leftarrow 1$ to ∞ do $T \leftarrow schedule[t]$

if T=0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow \text{Value}[next] - \text{Value}[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Simulated annealing algorithm

- Simulated annealing algorithm
 - developed originally for modeling physical processes (Metropolis et al, 53)
- Properties:
 - If T is decreased slowly enough the best configuration (state) is always reached
- Applications:
 - VLSI design
 - airline scheduling

CS 1571 Intro to Al

M. Hauskrecht

Simulated evolution and genetic algorithms

- Limitations of **simulated annealing:**
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!!)

This is the idea behind **genetic algorithms** in which we grow a population of individual combinations

CS 1571 Intro to Al

Genetic algorithms

Algorithm idea:

- Create a population of random configurations
- Create a new population through:
 - Biased selection of pairs of configurations from the previous population
 - Crossover (combination) of pairs
 - Mutation of resulting individuals
- Evolve the population over multiple generation cycles
- Selection of configurations to be combined:
 - Fitness function = value function
 measures the quality of an individual (a state) in the
 population

CS 1571 Intro to Al

M. Hauskrecht

Reproduction process in GA

 Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1

