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Finding optimal configurations
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Search for the optimal configuration

Constrain satisfaction problem:
Objective: find a configuration that satisfies all constraints

Optimal configuration problem:
Objective: find the best configuration
The quality of a configuration: is defined by some quality 

measure that reflects our preference towards each 
configuration (or state)

Our goal: optimize the configuration according to the quality 
measure also referred to as objective function
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Search for the optimal configuration

If the space of configurations  we search among is 
• Discrete or finite

– then it is a combinatorial optimization problem
• Continuous

– then it is a parametric optimization problem

In the following we cover with combinatorial optimization 
problems

Parametric optimization will covered next lecture.   
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Example: Traveling salesman problem

Problem:
• A graph with distances

• Goal: find the shortest tour which visits every city once and 
returns to the start 
An example of a valid tour:

A

B

C

DE

F

ABCDEF
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Example: N queens

• A CSP problem
• Is it possible to formulate the problem as an optimal 

configuration search problem ?
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Example: N queens
• A CSP problem
• Is it possible to formulate the problem as an optimal 

configuration search problem ? Yes. 
• The quality of a configuration in a CSP can be measured 

by the number of violated constraints
• Solving: minimize the number of constraint violations

# of violations =0# of violations =3 # of violations =1
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Iterative optimization methods

• Searching systematically for the best configuration with the 
DFS may not be the best solution

• Worst case running time:
– Exponential in the number of variables 

• Solutions to large ‘optimal’ configuration problems are often 
found using iterative optimization methods

• Methods: 
– Hill climbing
– Simulated Annealing
– Genetic algorithms
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Iterative optimization methods

Properties:

– Search the space of “complete” configurations
– Take advantage of local moves

• Operators make “local” changes to “complete”
configurations

– Keep track of just one state (the current state)
• no memory of past states
• !!! No search tree is necessary !!!
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Example: N-queens

• “Local” operators for generating the next state:
– Select a variable (a queen) 
– Reallocate its position
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Example: Traveling salesman problem

“Local” operator for generating the next state:
• divide the existing tour into two parts,
• reconnect the two parts in the opposite order 

Part 1

Part 2

A

B

C

DE

F

Example:

ABCD |  EF  |

ABCDFE

ABCDEF
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Example: Traveling salesman problem

“Local” operator: 
– generates  the next configuration (state)

A

B

C

DE

F

A

B

C

DE

F

C
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Searching the configuration space
Search algorithms
• keep only one configuration (the current configuration)

Problem:
• How to decide about which operator to apply? 

A

B

C

DE

FA

B

C

DE

F

A

B
DE

F

C

?
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Search algorithms

Two strategies to choose the configuration (state) to be visited
next: 
– Hill climbing
– Simulated annealing

• Later: Extensions to multiple current states:
– Genetic algorithms

• Note: Maximization is inverse of the minimization

[ ])(max)(min XfXf −⇔
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Hill climbing
• Look around at states in the local neighborhood and choose the 

one with the best value
• Assume: we want to maximize the 

value

states

Better

Worse
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Hill climbing

• Always choose the next best successor state 
• Stop when no improvement possible
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Hill climbing

• Look around at states in the local neighborhood and choose the 
one with the best value

• What can go wrong?

value

states

Better

Worse
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Hill climbing

• Hill climbing can get trapped in the local optimum

• What can go wrong?

value

states

Better

No more 
local improvement
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Hill climbing

• Hill climbing can get clueless on plateaus

value

states

plateau

?
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Hill climbing and n-queens

• The quality of a configuration is given by the number of 
constraints violated

• Then: Hill climbing reduces the number of constraints 
• Min-conflict strategy (heuristic):

– Choose randomly a variable with conflicts
– Choose its value such that it violates the fewest constraints

Success !! But not always!!!  The local optima problem!!!
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Simulated annealing
• Permits “bad” moves to states with lower value, thus escape 

the local optima
• Gradually decreases the frequency of such moves and their 

size (parameter controlling it – temperature)

value

states

Always up

Sometimes
down
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Simulated annealing algorithm
Defines the probability of making a move:

• The probability of moving into a state  with a higher value is 1

• The probability of moving into a state with a lower value is

– The probability is:
• Proportional to the energy difference

TEeNEXTAcceptp /)( ∆= CURRENTNEXT EEE −=∆where
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Simulated annealing algorithm

Current configuration

Energy  E =167

Energy  E =145

Energy  E =180

Energy  E =191
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Simulated annealing algorithm

TTE eeAcceptp /22/)( −∆ ==

CURRENTNEXT EEE −=∆

Current configuration

Energy  E =167

Energy  E =145

Energy  E =180

Energy  E =191

= 145 – 167 = -22

Sometimes accept!
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Simulated annealing algorithm

CURRENTNEXT EEE −=∆

Current configuration

Energy  E =167

Energy  E =145

Energy  E =180

Energy  E =191

= 180– 167 > 0

1)( =Acceptp

Always accept! 
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Simulated annealing algorithm
The probability of moving into a state with a lower value is 

The probability is:
– Modulated through a temperature parameter T:

• for                  the probability of any move approaches 1
• for                  the probability that a state with smaller 

value is selected goes down and approaches 0 
• Cooling schedule:

– Schedule of changes of a parameter T over iteration steps 

TEeAcceptp /)( ∆=

0→T

CURRENTNEXT EEE −=∆

∞→T

where
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Simulated annealing
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Simulated annealing algorithm
• Simulated annealing algorithm

– developed originally for modeling physical processes 
(Metropolis et al, 53)

• Properties:
– If T is decreased slowly enough the best configuration 

(state)  is always reached

• Applications:
– VLSI design
– airline scheduling
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Simulated evolution and genetic algorithms

• Limitations of simulated annealing:
– Pursues one state configuration at the time;
– Changes to configurations are typically local

Can we do better? 
• Assume we have two configurations with good values that are 

quite different
• We expect  that the combination of the two individual 

configurations may lead to a configuration with higher value
(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a 
population of individual combinations
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Genetic algorithms
Algorithm idea:
• Create a population of  random configurations
• Create a new population through:

– Biased selection of pairs of configurations from the 
previous population

– Crossover (combination) of pairs
– Mutation of resulting individuals

• Evolve the population over multiple generation cycles

• Selection of configurations to be combined:
– Fitness function = value function

measures the quality of an individual (a state) in the 
population
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Reproduction process in GA

• Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1


