
M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 6

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Informed search methods

M. HauskrechtCS 1571 Intro to AI

Announcements

Homework assignment 2 is out
• Due on Thursday, September 24, 2009 before the class
• Two parts:

– Pen and pencil part
– Programming part (Puzzle 8): informed search methods

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/

M. HauskrechtCS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Based on the idea of the limited-depth search, but
• It resolves the difficulty of knowing the depth limit ahead of

time.

Idea: try all depth limits in an increasing order.
That is, search first with the depth limit l=0, then l=1, l=2,
and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and
breadth-first search with only moderate computational
overhead

M. HauskrechtCS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.
(the same as BFS)

• Optimality: Yes, for the shortest path.
(the same as BFS)

• Time complexity:

exponential in the depth of the solution d
worse than BFS, but asymptotically the same

• Memory (space) complexity:

much better than BFS

)()()()()1(21 dd bObObObOO =++++ K

)(dbO

M. HauskrechtCS 1571 Intro to AI

Bi-directional search
• In some search problems we want to find the path from the

initial state to the unique goal state (e.g. traveler problem)
• Bi-directional search idea:

– Search both from the initial state and the goal state;
– Use inverse operators for the goal-initiated search.

Initial state Goal state

M. HauskrechtCS 1571 Intro to AI

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.
• Cut the depth of the search space by half

Initial state Goal state

d/2 d/2

O(bd/2) Time and memory complexity

M. HauskrechtCS 1571 Intro to AI

Bi-directional search

Why bidirectional search? Assume BFS.
• It cuts the depth of the search tree by half.
What is necessary?
• Merge the solutions.

• How? The hash structure remembers the side of the tree the
state was expanded first time. If the same state is reached from
other side we have a solution.

Initial state Goal state

Equal ?

M. HauskrechtCS 1571 Intro to AI

Minimum cost path search

Traveler example with distances [km]

Optimal path: the shortest distance path from Arad to Bucharest

M. HauskrechtCS 1571 Intro to AI

Searching for the minimum cost path

• General minimum cost path-search problem:
– adds weights or costs to operators (links)

“Intelligent” expansion of the search tree should be driven by the cost
of the current (partially) built path

Search strategy:
• Expand the leaf node with the minimum first.

– When operator costs are all equal to 1 it is equivalent to BFS
• The basic algorithm for finding the minimum cost path:

– Dijkstra’s shortest path
• In AI, the strategy goes under the name

– Uniform cost search

)(ngPath cost function ; path cost from the initial state to n

)(ng

M. HauskrechtCS 1571 Intro to AI

Properties of the uniform cost search

• Completeness: Yes, assuming that operator costs are non-
negative (the cost of path never decreases)

• Optimality: Yes. Returns the least-cost path.

• Time complexity:
number of nodes with the cost g(n) smaller than the optimal
cost

• Memory (space) complexity:
number of nodes with the cost g(n) smaller than the optimal
cost

))((successor)(ngng ≤

M. HauskrechtCS 1571 Intro to AI

Elimination of state repeats

Idea:
• A node is redundant and can be eliminated if there is another

node with exactly the same state and a shorter path from the
initial state

Assuming positive costs:
• If the state has already been expanded, is there a shorter path

to that node ?

M. HauskrechtCS 1571 Intro to AI

Elimination of state repeats

Idea:
• A node is redundant and can be eliminated if there is another

node with exactly the same state and a shorter path from the
initial state

Assuming positive costs:
– If the state was already expanded, is there a a shorter path

to that node ?
– No !

Implementation:
• Marking with the hash table

M. HauskrechtCS 1571 Intro to AI

Additional information to guide the search

• Uninformed search methods
– use only the information from the problem definition; and
– past explorations, e.g. cost of the path generated so far.

• Informed search methods
– incorporate additional measure of a potential of a specific

state to reach the goal
– a potential of a state (node) to reach a goal is measured

through a heuristic function
– A heuristic function is denoted as)(nh

M. HauskrechtCS 1571 Intro to AI

Evaluation-function driven search
• A search strategy can be defined in terms of a node

evaluation function
• Evaluation function

– Denoted
– Defines the desirability of a node to be expanded next

• Evaluation-function driven search: expand the node (state)
with the best evaluation-function value

• Implementation: priority queue with nodes in the decreasing
order of their evaluation function value

)(nf

M. HauskrechtCS 1571 Intro to AI

Uniform cost search

• Uniform cost search (Dijkstra’s shortest path):
– A special case of the evaluation-function driven search

• Path cost function ;
– path cost from the initial state to n

• Uniform-cost search:
– Can handle general minimum cost path-search problem:
– weights or costs associated with operators (links).

• Note: Uniform cost search relies on the problem definition only
– It is an uninformed search method

)(ng
)()(ngnf =

M. HauskrechtCS 1571 Intro to AI

Best-first search

Best-first search
• incorporates a heuristic function, , into the evaluation

function to guide the search.

Heuristic function:
• Measures a potential of a state (node) to reach a goal
• Typically in terms of some distance to a goal estimate

Example of a heuristic function:
• Assume a shortest path problem with city distances on

connections
• Straight-line distances between cities give additional

information we can use to guide the search

)(nf
)(nh

M. HauskrechtCS 1571 Intro to AI

Example: traveler problem with straight-line
distance information

• Straight-line distances give an estimate of the cost of the path
between the two cities

366

160

M. HauskrechtCS 1571 Intro to AI

Best-first search

Best-first search
• incorporates a heuristic function, , into the evaluation

function to guide the search.
• heuristic function: measures a potential of a state (node) to

reach a goal
Special cases (differ in the design of evaluation function):

– Greedy search

– A* algorithm

+ iterative deepening version of A* : IDA*

)(nf

)()(nhnf =

)()()(nhngnf +=

)(nh

M. HauskrechtCS 1571 Intro to AI

Greedy search method

• Evaluation function is equal to the heuristic function

• Idea: the node that seems to be the closest to the goal is
expanded first

)()(nhnf =

M. Hauskrecht

Greedy search method

• Evaluation function is equal to the heuristic function

• Idea: the node that seems to be the closest to the goal is
expanded first

)()(nhnf =

M. Hauskrecht

Greedy search

Arad 366

f(n)=h(n)

queue Arad 366

M. Hauskrecht

Greedy search

Arad

Zerind Sibiu Timisoara

366
75

140
118

374 253 329

queue Sibiu 253
Timisoara 329
Zerind 374

f(n)=h(n)

M. Hauskrecht

Greedy search

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

Fagaras 178
Rimniciu V. 193
Timisoara 329
Arad 366
Zerind 374
Oradea 380

queue

f(n)=h(n)

M. Hauskrecht

Greedy search

Arad

BucharestSibiu

Sibiu Timisoara

75
140

118

21199

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

253 0

Bucharest 0
Rimniciu V. 193
Sibiu 253
Timisoara 329
Arad 366
Zerind 374
Oradea 380

queue

f(n)=h(n)

Goal !!!

M. Hauskrecht

Properties of greedy search
• Completeness: ?

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

M. Hauskrecht

Properties of greedy search
• Completeness: No.

We can loop forever. Nodes that seem to be the best choices
can lead to cycles. Elimination of state repeats can solve the
problem.

• Optimality: No.
Even if we reach the goal, we may be biased by a bad
heuristic estimate. Evaluation function disregards the cost of
the path built so far.

• Time complexity:

• Memory (space) complexity:

)(mbO

)(mbO

Worst case !!! But often better!

Often better!

M. Hauskrecht

Example: traveler problem with straight-line
distance information

• Greedy search result

Total: 450

M. Hauskrecht

Example: traveler problem with straight-line
distance information

• Greedy search and optimality

Total: 450

Total: 418

M. Hauskrecht

A* search

• The problem with the greedy search is that it can keep
expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses only
past exploration information (path cost), no additional
information is utilized

• A* search

• Additional A*condition: admissible heuristic

)()()(nhngnf +=

)(ng - cost of reaching the state
)(nh - estimate of the cost from the current state to a goal
)(nf - estimate of the path length

)()(* nhnh ≤ for all n

M. Hauskrecht

A* search example

Arad 366

f(n)

queue Arad 366

M. Hauskrecht

A* search example

Arad

Zerind Sibiu Timisoara

366
75

140
118

449 393 447

queue Sibiu 393
Timisoara 447
Zerind 449

f(n)

M. Hauskrecht

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Rimnicu V. 413
Fagaras 417
Timisoara 447
Zerind 449
Oradea 526
Arad 646

queue

f(n)

M. Hauskrecht

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

447

Pitesti 415
Fagaras 417
Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Arad 646

queue

f(n)

M. Hauskrecht

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

Craiova Bucharest
607

615 418

97 138 101

Rimnicu
Vilcea

447447

Fagaras 417
Bucharest 418
Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Rimnicu V. 607
Arad 646

queue

f(n)

M. Hauskrecht

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

Craiova Bucharest
607

615 418

97 138 101

Rimnicu
Vilcea

447447

Bucharest 418
Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Rimnicu V. 607
Arad 646

queue

f(n)

BucharestSibiu

21199

591 450

M. Hauskrecht

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

Craiova Bucharest
607

615 418

97 138 101

Rimnicu
Vilcea

447447

Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Rimnicu V. 607
Arad 646

queue

f(n)

BucharestSibiu

21199

591 450

Goal !!

M. Hauskrecht

Properties of A* search

• Completeness: ?

• Optimality: ?

• Time complexity:
– ?

• Memory (space) complexity:
– ?

M. Hauskrecht

Properties of A* search

• Completeness: Yes.

• Optimality: ?

• Time complexity:
– ?

• Memory (space) complexity:
– ?

M. Hauskrecht

Optimality of A*

• In general, a heuristic function :
It can overestimate, be equal or underestimate the true

distance of a node to the goal
• Is the A* optimal for an arbitrary heuristic function?

)(* nh

)(nh

M. Hauskrecht

Example: traveler problem with straight-line
distance information

• Admissible heuristics

400

overestimate

M. Hauskrecht

Example: traveler problem with straight-line
distance information

• Admissible heuristics

f(n)= 220+400=620

400

f(n)= 239+178= 417

M. Hauskrecht

Example: traveler problem with straight-line
distance information

• Admissible heuristics Total path: 450

f(n)= 220+400=620

400

is suboptimal

f(n)= 450

M. Hauskrecht

Optimality of A*

• In general, a heuristic function :
Can overestimate, be equal or underestimate the true distance

of a node to the goal
• Is the A* optimal for an arbitrary heuristic function?
• No!

)(* nh

)(nh

M. Hauskrecht

Optimality of A*

• In general, a heuristic function :
Can overestimate, be equal or underestimate the true distance

of a node to the goal
• Admissible heuristic condition

– Never overestimate the distance to the goal !!!

Example: the straight-line distance in the travel problem
never overestimates the actual distance

Is A* search with an admissible heuristic is optimal ??

)()(* nhnh ≤ for all n

)(* nh

)(nh

M. Hauskrecht

Optimality of A* (proof)

• Let G1 be the optimal goal (with the minimum path distance).
Assume that we have a sub-optimal goal G2. Let n be a node
that is on the optimal path and is in the queue together with G2

admissible is since)(
suboptimal is G2 since)1(

0)2(since)2()2(

hnf
Gg

GhGgGf

≥
>

==

start

G2

G1

n

Then:

And thus A* never selects G2 before n

M. Hauskrecht

Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
– ?

• Memory (space) complexity:
– ?

M. Hauskrecht

Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
– Order roughly the number of nodes with f(n) smaller

than the cost of the optimal path g*

• Memory (space) complexity:
– Same as time complexity (all nodes in the memory)

M. Hauskrecht

Admissible heuristics

• Heuristics are designed based on relaxed version of problems
• Example: the 8-puzzle problem

• Admissible heuristics:
1. number of misplaced tiles
2. Sum of distances of all tiles from their goal positions

(Manhattan distance)

Initial position Goal position

M. Hauskrecht

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position: ?

M. Hauskrecht

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position: 7

M. Hauskrecht

Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position:

M. Hauskrecht

Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position:
2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14

For tiles: 1 2 3 4 5 6 7 8

M. Hauskrecht

Admissible heuristics

• We can have multiple admissible heuristics for the same
problem

• Dominance: Heuristic function dominates if

• Combination: two or more admissible heuristics can be
combined to give a new admissible heuristics
– Assume two admissible heuristics

)()(21 nhnhn ≥∀

1h 2h

))(),(max()(213 nhnhnh =

21 , hh

Then:

is admissible

