CS 1571 Introduction to AI Lecture 6

Informed search methods

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

Homework assignment 2 is out

- Due on Thursday, September 24, 2009 before the class
- Two parts:
 - Pen and pencil part
 - Programming part (Puzzle 8): informed search methods

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search, but
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit l=0, then l=1, l=2, and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead

CS 1571 Intro to Al

M. Hauskrecht

Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists. (the same as BFS)
- **Optimality: Yes**, for the shortest path. (the same as BFS)
- Time complexity:

$$O(1) + O(b^1) + O(b^2) + ... + O(b^d) = O(b^d)$$

exponential in the depth of the solution *d* worse than BFS, but asymptotically the same

• Memory (space) complexity:

much better than BFS

CS 1571 Intro to Al

Bi-directional search

- In some search problems we want to find the path from the initial state to the **unique goal state** (e.g. traveler problem)
- Bi-directional search idea:

- Search both from the initial state and the goal state;
- Use inverse operators for the goal-initiated search.

CS 1571 Intro to Al

M. Hauskrecht

Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.

• Cut the depth of the search space by half

O(b^{d/2}) Time and memory complexity

CS 1571 Intro to Al

Bi-directional search

Why bidirectional search? Assume BFS.

• It cuts the depth of the search tree by half.

What is necessary?

• Merge the solutions.

• How? The hash structure remembers the side of the tree the state was expanded first time. If the same state is reached from other side we have a solution.

CS 1571 Intro to Al

M. Hauskrecht

Minimum cost path search

Traveler example with distances [km]

Optimal path: the shortest distance path from Arad to Bucharest

CS 1571 Intro to Al

Searching for the minimum cost path

- General minimum cost path-search problem:
 - adds weights or costs to operators (links)

"Intelligent" expansion of the search tree should be driven by the cost of the current (partially) built path

Path cost function g(n); path cost from the initial state to n **Search strategy:**

- Expand the leaf node with the minimum g(n) first.
 - When operator costs are all equal to 1 it is equivalent to BFS
- The basic algorithm for finding the minimum cost path:
 - Dijkstra's shortest path
- In AI, the strategy goes under the name
 - Uniform cost search

CS 1571 Intro to Al

M. Hauskrecht

Properties of the uniform cost search

• Completeness: Yes, assuming that operator costs are nonnegative (the cost of path never decreases)

$$g(n) \le g(\text{successor }(n))$$

- Optimality: Yes. Returns the least-cost path.
- Time complexity:
 number of nodes with the cost g(n) smaller than the optimal
 cost
- Memory (space) complexity:
 number of nodes with the cost g(n) smaller than the optimal cost

CS 1571 Intro to Al

Elimination of state repeats

Idea:

 A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:

• If the state has already been expanded, is there a shorter path to that node?

CS 1571 Intro to Al

M. Hauskrecht

Elimination of state repeats

Idea:

 A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:

- If the state was already expanded, is there a a shorter path to that node?
- No!

Implementation:

• Marking with the hash table

CS 1571 Intro to Al

Additional information to guide the search

- Uninformed search methods
 - use only the information from the problem definition; and
 - past explorations, e.g. cost of the path generated so far.
- Informed search methods
 - incorporate additional measure of a potential of a specific state to reach the goal
 - a potential of a state (node) to reach a goal is measured through a heuristic function
 - A heuristic function is denoted as h(n)

CS 1571 Intro to Al

M. Hauskrecht

Evaluation-function driven search

- A search strategy can be defined in terms of a node evaluation function
- Evaluation function
 - Denoted f(n)
 - Defines the desirability of a node to be expanded next
- Evaluation-function driven search: expand the node (state) with the best evaluation-function value
- **Implementation: priority queue** with nodes in the decreasing order of their evaluation function value

CS 1571 Intro to Al

Uniform cost search

- Uniform cost search (Dijkstra's shortest path):
 - A special case of the evaluation-function driven search

$$f(n) = g(n)$$

- Path cost function g(n);
 - path cost from the initial state to n
- Uniform-cost search:
 - Can handle general minimum cost path-search problem:
 - weights or costs associated with operators (links).
- Note: Uniform cost search relies on the problem definition only
 - It is an uninformed search method

CS 1571 Intro to Al

M. Hauskrecht

Best-first search

Best-first search

• incorporates a **heuristic function**, h(n), into the evaluation function f(n) to guide the search.

Heuristic function:

- Measures a potential of a state (node) to reach a goal
- Typically in terms of some distance to a goal estimate

Example of a heuristic function:

- Assume a shortest path problem with city distances on connections
- Straight-line distances between cities give additional information we can use to guide the search

CS 1571 Intro to AI M. Hauskrecht

Example: traveler problem with straight-line distance information

• Straight-line distances give an estimate of the cost of the path between the two cities

CS 1571 Intro to Al

M. Hauskrecht

Best-first search

Best-first search

- incorporates a **heuristic function**, h(n), into the evaluation function f(n) to guide the search.
- **heuristic function:** measures a potential of a state (node) to reach a goal

Special cases (differ in the design of evaluation function):

- Greedy search

$$f(n) = h(n)$$

- A* algorithm

$$f(n) = g(n) + h(n)$$

+ iterative deepening version of A*: IDA*

CS 1571 Intro to Al

Greedy search method

• Evaluation function is equal to the heuristic function

$$f(n) = h(n)$$

• Idea: the node that seems to be the closest to the goal is expanded first

CS 1571 Intro to Al

M. Hauskrecht

Greedy search method

• Evaluation function is equal to the heuristic function

$$f(n)=h(n)$$

• Idea: the node that seems to be the closest to the goal is expanded first

Properties of greedy search

- Completeness: ?
- Optimality: ?
- Time complexity: ?
- Memory (space) complexity: ?

M. Hauskrecht

Properties of greedy search

• Completeness: No.

We can loop forever. Nodes that seem to be the best choices can lead to cycles. Elimination of state repeats can solve the problem.

• Optimality: No.

Even if we reach the goal, we may be biased by a bad heuristic estimate. Evaluation function disregards the cost of the path built so far.

• Time complexity: $O(b^m)$

Worst case !!! But often better!

• Memory (space) complexity: $O(h^m)$

Often better!

A* search

- The problem with the **greedy search** is that it can keep expanding paths that are already very expensive.
- The problem with the uniform-cost search is that it uses only past exploration information (path cost), no additional information is utilized
- A* search

$$f(n) = g(n) + h(n)$$

- g(n) cost of reaching the state
- h(n) estimate of the cost from the current state to a goal
- f(n) estimate of the path length
- Additional A*condition: admissible heuristic

$$h(n) \le h^*(n)$$
 for all n

M. Hauskrecht

Properties of A* search

Completeness: ?
Optimality: ?
Time complexity:

– ?
Memory (space) complexity:

– ?

M. Hauskrecht

Properties of A* search

Optimality: ?
Time complexity:

?

· Completeness: Yes.

• Memory (space) complexity:

Optimality of A*

- In general, a heuristic function h(n):
 It can overestimate, be equal or underestimate the true distance of a node to the goal h*(n)
- Is the A* optimal for an arbitrary heuristic function?

Optimality of A*

- In general, a heuristic function h(n):
 Can overestimate, be equal or underestimate the true distance of a node to the goal h*(n)
- Is the A* optimal for an arbitrary heuristic function?
- No!

M. Hauskrecht

Optimality of A*

- In general, a heuristic function h(n):
 Can overestimate, be equal or underestimate the true distance of a node to the goal h*(n)
- Admissible heuristic condition
 - Never overestimate the distance to the goal !!!

$$h(n) \le h^*(n)$$
 for all n

Example: the straight-line distance in the travel problem never overestimates the actual distance

Is A* search with an admissible heuristic is optimal ??

Optimality of A* (proof)

• Let G1 be the optimal goal (with the minimum path distance). Assume that we have a sub-optimal goal G2. Let *n* be a node that is on the optimal path and is in the queue together with G2

Then:
$$f(G2) = g(G2)$$
 since $h(G2) = 0$
> $g(G1)$ since G2 is suboptimal
 $\geq f(n)$ since h is admissible

And thus A* never selects G2 before n

M. Hauskrecht

Properties of A* search

- · Completeness: Yes.
- Optimality: Yes (with the admissible heuristic)
- Time complexity:

- ?

• Memory (space) complexity:

- ?

Properties of A* search

- Completeness: Yes.
- Optimality: Yes (with the admissible heuristic)
- · Time complexity:
 - Order roughly the number of nodes with f(n) smaller than the cost of the optimal path g^*
- Memory (space) complexity:
 - Same as time complexity (all nodes in the memory)

M. Hauskrecht

Admissible heuristics

- Heuristics are designed based on relaxed version of problems
- **Example:** the 8-puzzle problem

Initial position Goal position

4	5	
6	1	8
7	3	2

- Admissible heuristics:
 - 1. number of misplaced tiles
 - 2. Sum of distances of all tiles from their goal positions (Manhattan distance)

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position

Goal position

4	5	
6	1	8
7	3	2

1	2	3
4	5	6
7	8	

h(n) for the initial position: ?

M. Hauskrecht

Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position

Goal position

4	5	
6	1	8
7	3	2

1	2	3
4	5	6
7	8	

h(n) for the initial position: 7

Admissible heuristics

• **Heuristic 2:** Sum of distances of all tiles from their goal positions (Manhattan distance)

Initial position

Goal	position
Ovai	position

h(n) for the initial position:

M. Hauskrecht

Admissible heuristics

• **Heuristic 2:** Sum of distances of all tiles from their goal positions (Manhattan distance)

Initial position

Goal position

h(n) for the initial position:

$$2+3+3+1+1+2+0+2=14$$

For tiles: 1

2 3 4

7 8

Admissible heuristics

- We can have multiple admissible heuristics for the same problem
- **Dominance:** Heuristic function h_1 dominates h_2 if

$$\forall n \ h_1(n) \ge h_2(n)$$

- Combination: two or more admissible heuristics can be combined to give a new admissible heuristics
 - Assume two admissible heuristics h_1, h_2

Then: $h_3(n) = \max(h_1(n), h_2(n))$

is admissible