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Announcements

Homework assignment 2 is out
• Due on Thursday, September 24, 2009 before the class
• Two parts:

– Pen and pencil part
– Programming part (Puzzle 8): informed search methods

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
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Iterative deepening algorithm (IDA)

• Based on the idea of the limited-depth search, but
• It resolves the difficulty of knowing the depth limit ahead of 

time.

Idea: try all depth limits in an increasing order.
That is, search first with the depth limit l=0, then l=1, l=2, 
and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and 
breadth-first search with only moderate computational 
overhead
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Properties of IDA

• Completeness: Yes. The solution is reached if it exists.
(the same as BFS)

• Optimality: Yes, for the shortest path.
(the same as BFS) 

• Time complexity:

exponential in the depth of the solution d
worse than BFS, but asymptotically the same 

• Memory (space) complexity:

much better than BFS
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Bi-directional search
• In some search problems we want to find the path from the 

initial state to the unique goal state (e.g. traveler problem)
• Bi-directional search idea:

– Search both from the initial state and the goal state;
– Use inverse operators for the goal-initiated search.

Initial state Goal state
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Bi-directional search

Why bidirectional search? What is the benefit? Assume BFS.
• Cut the depth of the search space by half 

Initial state Goal state

d/2 d/2

O(bd/2) Time and memory complexity
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Bi-directional search

Why bidirectional search? Assume BFS.
• It cuts the depth of the search tree by half.
What is necessary?
• Merge the solutions.

• How? The hash structure remembers the side of the tree the 
state was expanded first time. If the same state is reached from
other side we have a solution.   

Initial state Goal state

Equal ?
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Minimum cost path search

Traveler example with distances [km]

Optimal path: the shortest distance path from Arad to Bucharest
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Searching  for the minimum cost path

• General minimum cost path-search problem:
– adds weights or costs to operators (links)

“Intelligent” expansion of the search tree should be driven by the cost 
of the current (partially) built path

Search strategy:
• Expand the leaf node with the minimum           first.

– When operator costs are all equal to 1 it is equivalent to BFS
• The basic algorithm for finding the minimum cost path:

– Dijkstra’s shortest path
• In AI, the strategy goes under the name

– Uniform cost search

)(ngPath cost function          ;  path cost from the initial state to n

)(ng
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Properties of the uniform cost search

• Completeness: Yes, assuming that operator costs are non-
negative (the cost of path never decreases)

• Optimality: Yes. Returns the least-cost path. 

• Time complexity:
number of nodes with the cost g(n) smaller than the optimal 
cost

• Memory (space) complexity:
number of nodes with the cost g(n) smaller than the optimal 
cost

))((successor)( ngng ≤
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Elimination of state repeats

Idea:
• A node is redundant  and can be eliminated if there is another 

node with exactly the same state and a shorter path from the 
initial state

Assuming positive costs:
• If the state has already been expanded, is there a shorter path

to that node ?
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Elimination of state repeats

Idea:
• A node is redundant  and can be eliminated if there is another 

node with exactly the same state and a shorter path from the 
initial state

Assuming positive costs:
– If the state was already expanded, is there a a shorter path 

to that node ?
– No !

Implementation:
• Marking with the hash table 
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Additional information to guide the search

• Uninformed search methods
– use only the information from the problem definition; and
– past explorations, e.g. cost of the path generated so far.

• Informed search methods
– incorporate additional measure of a potential of a specific 

state to reach the goal
– a potential of a state (node) to reach a goal is measured 

through a  heuristic function
– A heuristic function is denoted as )(nh
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Evaluation-function driven search
• A search strategy can be defined in terms of a node 

evaluation function
• Evaluation function

– Denoted
– Defines the desirability of a node to be expanded next

• Evaluation-function driven search: expand the node (state) 
with the best evaluation-function value

• Implementation: priority queue with nodes in the decreasing 
order of their evaluation function value

)(nf
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Uniform cost search

• Uniform cost search (Dijkstra’s shortest path):
– A special case of the evaluation-function driven search

• Path cost function ;  
– path cost from the initial state to n

• Uniform-cost search:
– Can handle general minimum cost path-search problem:
– weights or costs associated with operators (links).

• Note: Uniform cost search relies on the problem definition only
– It is an uninformed search method

)(ng
)()( ngnf =
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Best-first search

Best-first search
• incorporates a heuristic function,      , into the evaluation 

function                 to guide the search. 

Heuristic function:
• Measures a potential of a state (node) to reach a goal
• Typically in terms of some distance to a goal estimate

Example of a heuristic function:
• Assume a shortest path problem with city distances on 

connections
• Straight-line distances between cities give additional 

information we can use to guide the search

)(nf
)(nh
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Example: traveler problem with straight-line 
distance information

• Straight-line distances give an estimate of the cost of the path 
between the two cities

366

160
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Best-first search

Best-first search 
• incorporates a heuristic function,      , into the evaluation 

function              to guide the search. 
• heuristic function: measures a potential of a state (node) to 

reach a goal
Special cases (differ in the design of evaluation function):

– Greedy search

– A* algorithm

+  iterative deepening version of A* :  IDA*

)(nf

)()( nhnf =

)()()( nhngnf +=

)(nh
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Greedy search method

• Evaluation function is equal to the heuristic function

• Idea: the node that seems to be the closest to the goal is 
expanded first

)()( nhnf =
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Greedy search method

• Evaluation function is equal to the heuristic function

• Idea: the node that seems to be the closest to the goal is 
expanded first

)()( nhnf =
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Greedy search

Arad 366

f(n)=h(n)

queue Arad             366
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Greedy search

Arad

Zerind Sibiu Timisoara

366
75

140
118

374 253 329

queue Sibiu              253
Timisoara      329
Zerind 374

f(n)=h(n)



M. Hauskrecht

Greedy search

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

Fagaras 178
Rimniciu V.  193
Timisoara      329
Arad              366
Zerind 374
Oradea          380

queue

f(n)=h(n)
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Greedy search

Arad

BucharestSibiu

Sibiu Timisoara

75
140

118

21199

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

253 0

Bucharest      0
Rimniciu V.  193
Sibiu             253
Timisoara      329
Arad              366
Zerind 374
Oradea           380

queue

f(n)=h(n)

Goal !!!



M. Hauskrecht

Properties of greedy search
• Completeness: ? 

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?
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Properties of greedy search
• Completeness: No. 

We can loop forever. Nodes that seem to be the best choices 
can lead to cycles. Elimination of state repeats can solve the 
problem.

• Optimality: No.
Even if we reach the goal, we may be biased by a bad 
heuristic estimate. Evaluation function disregards the cost of 
the path built so far.  

• Time complexity:

• Memory (space) complexity:

)( mbO

)( mbO

Worst case !!! But often better!

Often better!



M. Hauskrecht

Example: traveler problem with straight-line 
distance information

• Greedy search result

Total: 450
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Example: traveler problem with straight-line 
distance information

• Greedy search and optimality

Total: 450

Total: 418
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A* search

• The problem with the greedy search is that it can keep 
expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses only 
past  exploration information (path cost), no additional 
information is utilized

• A* search

• Additional A*condition:  admissible heuristic

)()()( nhngnf +=

)(ng - cost of reaching the state
)(nh - estimate of the cost from the current state to a goal
)(nf - estimate of the path length

)()( * nhnh ≤ for all n
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A* search example

Arad 366

f(n)

queue Arad             366
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A* search example

Arad

Zerind Sibiu Timisoara

366
75

140
118

449 393 447

queue Sibiu              393
Timisoara      447
Zerind 449

f(n)
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A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Rimnicu V.   413
Fagaras 417
Timisoara      447
Zerind 449
Oradea          526
Arad              646

queue

f(n)
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A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

447

Pitesti           415
Fagaras 417
Timisoara      447
Zerind 449
Oradea           526
Craiova         526
Sibiu              553
Arad               646

queue

f(n)
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A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

Craiova Bucharest
607

615 418

97 138 101

Rimnicu
Vilcea

447447

Fagaras 417
Bucharest      418
Timisoara      447
Zerind 449
Oradea           526
Craiova          526
Sibiu               553
Rimnicu V.    607
Arad               646

queue

f(n)
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A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

Craiova Bucharest
607

615 418

97 138 101

Rimnicu
Vilcea

447447

Bucharest      418
Timisoara      447
Zerind 449
Oradea           526
Craiova          526
Sibiu               553
Rimnicu V.    607
Arad               646

queue

f(n)

BucharestSibiu

21199

591 450
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A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 415 553

146 97 80

Craiova Bucharest
607

615 418

97 138 101

Rimnicu
Vilcea

447447

Timisoara      447
Zerind 449
Oradea           526
Craiova          526
Sibiu               553
Rimnicu V.    607
Arad               646

queue

f(n)

BucharestSibiu

21199

591 450

Goal !!
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Properties of A* search

• Completeness:  ? 

• Optimality: ? 

• Time complexity:
– ?

• Memory (space) complexity:
– ?                    
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Properties of A* search

• Completeness: Yes.

• Optimality:  ?

• Time complexity:
– ?

• Memory (space) complexity:
– ?                    
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Optimality of A*

• In general, a heuristic function   :
It can overestimate, be equal or underestimate the true 

distance of a node to the goal 
• Is the A* optimal for an arbitrary heuristic function?

)(* nh

)(nh
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Example: traveler problem with straight-line 
distance information

• Admissible heuristics

400

overestimate
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Example: traveler problem with straight-line 
distance information

• Admissible heuristics

f(n)= 220+400=620

400

f(n)= 239+178= 417
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Example: traveler problem with straight-line 
distance information

• Admissible heuristics Total path: 450

f(n)= 220+400=620

400

is suboptimal

f(n)= 450
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Optimality of  A*

• In general, a heuristic function   :
Can overestimate, be equal or underestimate the true distance 

of a node to the goal 
• Is the A* optimal for an arbitrary heuristic function?
• No! 

)(* nh

)(nh
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Optimality of  A*

• In general, a heuristic function   :
Can overestimate, be equal or underestimate the true distance 

of a node to the goal 
• Admissible heuristic condition

– Never overestimate the distance to the goal !!!

Example: the straight-line distance in the travel problem 
never overestimates the actual distance

Is A* search with an admissible heuristic is optimal ??

)()( * nhnh ≤ for all n

)(* nh

)(nh
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Optimality of A* (proof)

• Let G1 be the optimal goal (with the minimum path distance). 
Assume that we have a sub-optimal goal G2. Let n be a node 
that is on the optimal path and is in the queue together with G2

admissible is  since)(
suboptimal is G2 since)1(

0)2(since)2()2(

hnf
Gg

GhGgGf

≥
>

==

start

G2

G1

n

Then:

And thus A* never selects G2 before n

M. Hauskrecht

Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
– ?

• Memory (space) complexity:
– ?                    
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Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
– Order roughly the number of nodes with f(n) smaller 

than the cost of the optimal path g*

• Memory (space) complexity:
– Same as time complexity (all nodes in the memory)
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Admissible heuristics

• Heuristics are designed based on relaxed version of problems
• Example: the 8-puzzle problem

• Admissible heuristics:
1. number of misplaced tiles
2. Sum of distances of all tiles from their goal positions 

(Manhattan distance)

Initial position Goal position
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Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position:  ? 
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Admissible heuristics

Heuristics 1: number of misplaced tiles

Initial position Goal position

h(n) for the initial position:  7 



M. Hauskrecht

Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal 
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position:
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Admissible heuristics

• Heuristic 2: Sum of distances of all tiles from their goal 
positions (Manhattan distance)

Initial position Goal position

h(n) for the initial position: 
2 + 3 + 3 + 1 + 1 + 2 + 0 + 2 = 14

For tiles:        1      2      3      4       5      6       7 8 
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Admissible heuristics

• We can have multiple admissible heuristics for the same 
problem

• Dominance: Heuristic function     dominates      if

• Combination: two or more admissible heuristics can be 
combined to give a new admissible heuristics
– Assume two admissible heuristics 

)()( 21 nhnhn ≥∀

1h 2h

))(),(max()( 213 nhnhnh =

21 , hh

Then:

is admissible


