CS 1571 Introduction to AI
Lecture 5

Uninformed search methods II.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Homework assignment 1 is out
• Due on Thursday before the lecture

Course web page:
http://www.cs.pitt.edu/~milos/courses/cs1571/
Uninformed methods

- Uninformed search methods use only information available in the problem definition
 - Breadth-first search (BFS)
 - Depth-first search (DFS)
 - Iterative deepening (IDA)
 - Bi-directional search

- For the minimum cost path problem:
 - Uniform cost search

Breadth first search (BFS)

- The shallowest node is expanded first
Properties of breadth-first search

- **Completeness**: Yes. The solution is reached if it exists.
- **Optimality**: Yes, for the shortest path.
- **Time complexity**:
 \[1 + b + b^2 + \ldots + b^d = O(b^d) \]
 exponential in the depth of the solution \(d \)
- **Memory (space) complexity**:
 \[O(b^d) \]
 same as time - every node is kept in the memory

Depth-first search (DFS)

- The deepest node is expanded first
- Backtrack when the path cannot be further expanded
Properties of depth-first search

• **Completeness:** No. Infinite loops can occur.

• **Optimality:** No. Solution found first may not be the shortest possible.

• **Time complexity:**
 \[O(b^m) \]
 exponential in the maximum depth of the search tree \(m \)

• **Memory (space) complexity:**
 \[O(bl) \]
 linear in the maximum depth of the search tree \(m \)

Limited-depth depth first search

• How to eliminate infinite depth first exploration?
• Put the limit \(l \) on the depth of the depth-first exploration

Limit \(l=2 \)

\[l \]

\[l \]

\[\text{Not explored} \]

• **Time complexity:**
 \[O(b^l) \]
 \(l \) - is the given limit

• **Memory complexity:**
 \[O(bl) \]
Elimination of state repeats

While searching the state space for the solution we can encounter the same state many times.

Question: Is it necessary to keep and expand all copies of states in the search tree?

Two possible cases:

(A) Cyclic state repeats

(B) Non-cyclic state repeats

Iterative deepening algorithm (IDA)

- Based on the idea of the limited-depth search, but
- It resolves the difficulty of knowing the depth limit ahead of time.

Idea: try all depth limits in an increasing order.

That is, search first with the depth limit \(l=0 \), then \(l=1, l=2 \), and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and breadth-first search with only moderate computational overhead
Iterative deepening algorithm (IDA)

- Progressively increases the limit of the limited-depth depth-first search

<table>
<thead>
<tr>
<th>Limit</th>
<th>Depth</th>
<th>Cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit 0</td>
<td>0</td>
<td>Arad, Zerind, Sibiu, Timisoara</td>
</tr>
<tr>
<td>Limit 1</td>
<td>1</td>
<td>Arad, Sibiu, Timisoara</td>
</tr>
<tr>
<td>Limit 2</td>
<td>2</td>
<td>Arad, Sibiu, Timisoara</td>
</tr>
</tbody>
</table>

Iterative deepening

Cutoff depth = 0
Iterative deepening

Cutoff depth = 0

Iterative deepening

Cutoff depth = 1
Iterative deepening

Cutoff depth = 1
Iterative deepening

Cutoff depth = 1

Iterative deepening

Cutoff depth = 1
Iterative deepening

Cutoff depth = 2
Iterative deepening

Cutoff depth = 2

[Diagram showing a tree structure with cities connected through directed edges, starting from Arad and including connections to Zerind, Sibiu, and Timisoara, with further branches to other cities like Oradea, Fagaras, and Lugoj.]
Iterative deepening

Cutoff depth = 2

Iterative deepening

Cutoff depth = 2
Properties of IDA

• Completeness: Yes. The solution is reached if it exists.
 (the same as BFS when limit is always increased by 1)

• Optimality: Yes, for the shortest path.
 (the same as BFS)

• Time complexity:
 ?

• Memory (space) complexity:
 ?
Properties of IDA

- **Completeness**: Yes. The solution is reached if it exists.
 (the same as BFS)

- **Optimality**: Yes, for the shortest path.
 (the same as BFS)

- **Time complexity**:
 \[O(1) + O(b^1) + O(b^2) + \ldots + O(b^d) = O(b^d) \]
 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same

- **Memory (space) complexity**:
 ?
Properties of IDA

- **Completeness:** Yes. The solution is reached if it exists.
 (the same as BFS)
- **Optimality:** Yes, for the shortest path.
 (the same as BFS)
- **Time complexity:**
 \[O(1) + O(b^1) + O(b^2) + \ldots + O(b^d) = O(b^d) \]
 exponential in the depth of the solution \(d \)
 worse than BFS, but asymptotically the same
- **Memory (space) complexity:**
 \[O(db) \]
 much better than BFS
Bi-directional search

- In some search problems we want to find the path from the initial state to the unique goal state (e.g. traveler problem)
- **Bi-directional search idea:**
 - Search both from the initial state and the goal state;
 - Use inverse operators for the goal-initiated search.

Why bidirectional search? What is the benefit? Assume BFS.
- Cut the depth of the search space by half

\[O(b^{d/2}) \quad \text{Time and memory complexity} \]
Bi-directional search

Why bidirectional search? Assume BFS.
• It cuts the depth of the search tree by half.

What is necessary?
• Merge the solutions.

How? The hash structure remembers the side of the tree the state was expanded first time. If the same state is reached from other side we have a solution.
Minimum cost path search

Traveler example with distances [km]

Optimal path: the shortest distance path from Arad to Bucharest

Searching for the minimum cost path

- General minimum cost path-search problem:
 - adds weights or costs to operators (links)

 “Intelligent” expansion of the search tree should be driven by the cost of the current (partially) built path

 Path cost function \(g(n) \); path cost from the initial state to \(n \)

Search strategy:

- Expand the leaf node with the minimum \(g(n) \) first.
 - When operator costs are all equal to 1 it is equivalent to BFS
- The basic algorithm for finding the minimum cost path:
 - Dijkstra’s shortest path
- In AI, the strategy goes under the name
 - Uniform cost search
Uniform cost search

- Expand the node with the minimum path cost first
- Implementation: a priority queue
Uniform cost search

queue

\[g(n) \]

<table>
<thead>
<tr>
<th>Location</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timisoara</td>
<td>118</td>
</tr>
<tr>
<td>Sibiu</td>
<td>140</td>
</tr>
<tr>
<td>Oradea</td>
<td>146</td>
</tr>
<tr>
<td>Arad</td>
<td>150</td>
</tr>
</tbody>
</table>

\[\text{Arad} \rightarrow \text{Zerind} \rightarrow \text{Sibiu} \rightarrow \text{Timisoara} \]

\[\text{Arad} \rightarrow \text{Oradea} \]

\[(150, 146) \]

Uniform cost search

queue

\[g(n) \]

<table>
<thead>
<tr>
<th>Location</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sibiu</td>
<td>140</td>
</tr>
<tr>
<td>Oradea</td>
<td>146</td>
</tr>
<tr>
<td>Arad</td>
<td>150</td>
</tr>
<tr>
<td>Lugoj</td>
<td>129</td>
</tr>
<tr>
<td>Arad</td>
<td>236</td>
</tr>
</tbody>
</table>

\[\text{Arad} \rightarrow \text{Zerind} \rightarrow \text{Sibiu} \rightarrow \text{Timisoara} \]

\[\text{Arad} \rightarrow \text{Oradea} \]

\[(150, 146, 236, 229) \]
Properties of the uniform cost search

• Completeness: Yes, assuming that operator costs are non-negative (the cost of path never decreases)
 \[g(n) \leq g(\text{successor } n) \]

• Optimality: Yes. Returns the least-cost path.

• Time complexity:
 number of nodes with the cost \(g(n) \) smaller than the optimal cost

• Memory (space) complexity:
 number of nodes with the cost \(g(n) \) smaller than the optimal cost
Elimination of state repeats

Idea:
• A node is redundant and can be eliminated if there is another node with exactly the same state and a shorter path from the initial state

Assuming positive costs:
• If the state has already been expanded, is there a shorter path to that node?

Implementation:
• Marking with the hash table