
M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 3

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Problem solving by searching

M. HauskrechtCS 1571 Intro to AI

Solving problems by searching

• Some problems have a straightforward solution
– Just apply a known formula, or a standardized procedure

Example: solution of the quadratic equation

• More interesting problems require search:
– more than one possible alternative needs to be explored

before the problem is solved
– the number of alternatives to search among can be very

large, even infinite.

a
acbbx

2
42

2,1
−±−

=

M. HauskrechtCS 1571 Intro to AI

Search example: Traveler problem
• Find a route from one city (Arad) to the other (Bucharest)

M. HauskrechtCS 1571 Intro to AI

Example. Puzzle 8.

• Find the sequence of the empty tile moves from the initial
game position to the designated target position

Initial position Goal position

M. HauskrechtCS 1571 Intro to AI

Example. N-queens problem.
Find a configuration of n queens not attacking each other

A goal configuration

A bad configuration

M. HauskrechtCS 1571 Intro to AI

A search problem
is defined by:
• A search space:

– The set of objects among which we search for the solution
Example: objects = routes between cities, or N-queen
configurations

• A goal condition
– What are the characteristics of the object we want to find in

the search space?
– Examples:

• Path between cities A and B
• Path between A and B with the smallest number of links
• Path between A and B with the shortest distance
• Non-attacking n-queen configuration

M. HauskrechtCS 1571 Intro to AI

Search

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object)

• Important to remember !!!
– You can choose the search space and the exploration policy
– These choices can have a profound effect on the efficiency of

the solution

M. HauskrechtCS 1571 Intro to AI

Graph search
• Many search problems can be naturally represented as

graph search problems
• Typical example: Route finding

– Map corresponds to the graph, nodes to cities, links to
available connections between cities

– Goal: find a route (path) in the graph from S to T

start

target

S

T

A

B
C

D

E
F

G H

I

J

K

L

M. HauskrechtCS 1571 Intro to AI

Graph search problem
• States - game positions, or locations in the map that are

represented by nodes in the graph
• Operators - connections between cities, valid moves
• Initial state – start position, start city
• Goal state – target position (positions), target city (cities)

start

target

S

T

A

B
C

D

E
F

G H

I

J

K

L

M. HauskrechtCS 1571 Intro to AI

Graph search
• Less obvious conversion: Puzzle 8. Find a sequence of

moves from the initial configuration to the goal configuration.
– nodes corresponds to states of the game,
– links to valid moves made by the player

• Note: the graph for some problem can become very large,

start
target

M. HauskrechtCS 1571 Intro to AI

N-queens: Solution 1

Search space:
– all configurations of N queens on the board

• Graph search:
– States: configurations N queens
– Operators: change a positions of one of the queens
– Initial state: an arbitrary configuration
– Goal: non-attacking queens

…

goalsinitial

M. HauskrechtCS 1571 Intro to AI

N-queens: solution 2
• Search space: configurations of 0,1,2, … N queens
• Graph search:

– States configurations of 0,1,2,…N queens
– Operators: additions of a queen to the board
– Initial state: 0 queens on the board
– Goal: non-attacking queens

start

M. HauskrechtCS 1571 Intro to AI

Two types of search problems

• Path search
– Find a path (trajectory) between states S and T
– Example: traveler problem, Puzzle 8
– Additional goal criterion: minimum length (cost) path

• Configuration search (constraint satisfaction search)
– Find a state (configuration) satisfying the goal condition
– Example: n-queens problem, design of a device with a

predefined functionality
– Additional goal criterion: “soft” preferences for

configurations, e.g. minimum cost design

M. HauskrechtCS 1571 Intro to AI

Traveler problem.

Traveler problem formulation:
• States: different cities
• Initial state: city Arad
• Operators: moves to cities in the neighborhood
• Goal condition: city Bucharest
• Type of the problem: path search
• Possible solution cost: path length

M. HauskrechtCS 1571 Intro to AI

Puzzle 8 example

Search problem formulation:
• States: tile configurations
• Initial state: initial configuration
• Operators: moves of the empty tile
• Goal: the winning configuration
• Type of the problem: path search
• Possible solution cost: a number of moves

Initial state Goal state

M. HauskrechtCS 1571 Intro to AI

N-queens problem: version 1

Problem formulation:
• States: different configurations of 4 queens on the board
• Initial state: an arbitrary configuration of 4 queens
• Operators: move one queen to a different unoccupied position
• Goal: a configuration with non-attacking queens
• Type of the problem: configuration search

Valid goal configurationBad goal configuration

M. HauskrechtCS 1571 Intro to AI

N-queens problem: version 2
Alternative formulation of N-queens problem

Problem formulation:
• States: configurations of 0 to 4 queens on the board
• Initial state: no-queen configuration
• Operators: add a queen to the leftmost unoccupied column
• Goal: a configuration with 4 non-attacking queens
• Type of the problem: configuration search

Initial configuration

M. HauskrechtCS 1571 Intro to AI

Comparison of two problem formulations

Operators: switch one of the queens

Operators: add a queen to the leftmost unoccupied column
5432 444441 <++++ - configurations altogether

Solution 2:

Solution 1:









4

16
- all configurations

M. HauskrechtCS 1571 Intro to AI

Even better solution to the N-queens

Operators: add a queen to the leftmost unoccupied column

Solution 2:

Solution 3:
Operators: add a queen to the leftmost unoccupied column

such that it does not row-attack already placed queens

54< - configurations altogether

651*2*3*42*3*43*441 =++++≤
- configurations altogether

M. HauskrechtCS 1571 Intro to AI

Formulating a search problem

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object)

• Think twice before solving the problem by search:
– Choose the search space and the exploration policy

M. HauskrechtCS 1571 Intro to AI

Formulating a search problem

• Search (process)
– The process of exploration of the search space

• The efficiency of the search depends on:
– The search space and its size
– Method used to explore (traverse) the search space
– Condition to test the satisfaction of the search objective

(what it takes to determine I found the desired goal object)

• Think twice before solving the problem by search:
– Choose the search space and the exploration policy

M. HauskrechtCS 1571 Intro to AI

Search process
• Exploration of the state space through successive application

of operators from the initial state
• A search tree = a kind of (search) exploration trace, branches

corresponding to explored paths, and leaf nodes corresponding
to the exploration fringe

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

M. HauskrechtCS 1571 Intro to AI

Search tree
• A search tree = a (search) exploration trace

– It is different from the graph defining the problem
– States can repeat in the search tree

Graph

Search treeArad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

M. HauskrechtCS 1571 Intro to AI

Search tree

Arad

Zerind Sibiu Timisoa
ra

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

A branch in the search tree
= path in the graph

M. HauskrechtCS 1571 Intro to AI

Search tree

Arad

Zerind Sibiu Timisoa
ra

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

A branch in the search tree
= path in the graph

M. HauskrechtCS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

M. HauskrechtCS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

M. HauskrechtCS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Expanded node

Generated (or active, or open) nodes

M. HauskrechtCS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

OradeaArad

Expanded nodes

Generated (active, open) nodes

M. HauskrechtCS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

M. HauskrechtCS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

General search algorithm

• Search methods differ in how they explore the space, that
is how they choose the node to expand next !!!!!

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore next return failure
choose a leaf node of the tree to expand next according to a strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

M. HauskrechtCS 1571 Intro to AI

Implementation of search
• Search methods can be implemented using queue structure

• Candidates are added to nodes representing the queue structure

General search (problem, Queuing-fn)
nodes Make-queue(Make-node(Initial-state(problem)))
loop

if nodes is empty then return failure
node Remove-node(nodes)
if Goal-test(problem) applied to State(node) is satisfied then return node
nodes Queuing-fn(nodes, Expand(node, Operators(node)))

end loop

←

←

←

M. HauskrechtCS 1571 Intro to AI

Implementation of search

• A search tree node is a data-structure constituting part of a
search tree

• Expand function – applies Operators to the state represented
by the search tree node. Together with Queuing-fn it fills the
attributes.

ST
Node

State

state

children

parent

Other attributes:
- state value (cost)
- depth
- path cost

M. HauskrechtCS 1571 Intro to AI

Uninformed search methods

• rely only on the information available in the problem
definition

– Breadth first search

– Depth first search

– Iterative deepening

– Bi-directional search

For the minimum cost path problem:

– Uniform cost search

M. HauskrechtCS 1571 Intro to AI

Search methods
Properties of search methods :
• Completeness.

– Does the method find the solution if it exists?

• Optimality.
– Is the solution returned by the algorithm optimal? Does it

give a minimum length path?

• Space and time complexity.
– How much time it takes to find the solution?
– How much memory is needed to do this?

M. HauskrechtCS 1571 Intro to AI

Parameters to measure complexities.
• Space and time complexity.

– Complexities are measured in terms of parameters:
• b – maximum branching factor
• d – depth of the optimal solution
• m – maximum depth of the state space

Branching factor

Number of
operators

M. HauskrechtCS 1571 Intro to AI

Breadth first search (BFS)

• The shallowest node is expanded first

M. HauskrechtCS 1571 Intro to AI

Breadth-first search
• Expand the shallowest node first
• Implementation: put successors to the end of the queue (FIFO)

Arad
Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

OradeaArad

Sibiu
Timisoara
Arad
Oradea

queue

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

Timisoara
Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea

queue

Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea
Arad
Lugoj

queue

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: ?

• Optimality: ?

• Time complexity: ?
• Memory (space) complexity: ?

– For complexities use:
• b – maximum branching factor
• d – depth of the optimal solution
• m – maximum depth of the search tree

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity: ?

• Memory (space) complexity: ?

