CS 1571 Introduction to AI Lecture 26

Review

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Search

- Basic definition of the search problem
 - Search space, operators, initial state, goal condition
- Formulation of a problem:
 - We have some control over the complexity of the search space size
- Two types:
 - Path vs. configuration search

CS 1571 Introduction to Al

Search

- Methods for searching the search space:
- · Search trace captured by the search tree
- Search methods properties :
 - Completeness, Optimality, Space and time complexity.
- Complexities
 - measured in terms of a branching factor (b), depth of the optimal solution (d), maximum depth of the state space (m)

CS 1571 Introduction to Al

M. Hauskrecht

Search

- Uninformed methods:
 - Breadth first search, Depth first search, Iterative deepening, Bi-directional search, Uniform cost search (for the weighted path search)
- Informed methods:
 - **Heuristic function** (h): potential of a state to reach the goal
 - Evaluation function (f): desirability of a state to be expanded next
 - Best first search:
 - Greedy f(n) = h(n)
 - A*: f(n) = g(n) + h(n)

the role of admissible heuristics, optimality

CS 1571 Introduction to Al

Search

- Constraint satisfaction problem (CSP)
 - Variables, constraints on values (reflect the goal)
 - Formulation of a CSP as search
 - Methods and heuristics for CSP search
 - Backtracking, constraint propagation, most constrained variable, least constrained value
- Complex configuration searches. Use iterative algorithms:
 - Methods: Hill climbing, Simulated annealing, Genetic algorithms
 - Advantage: memory !! Useful for very large optimization problems.

CS 1571 Introduction to Al

M. Hauskrecht

Search

- Adversarial search (game playing)
 - Specifics of a game search, game problem formulation
 - rational opponent
- Algorithms:
 - Minimax algorithm
 - Complexity bottleneck for large games
 - Alpha-Beta pruning: prunes branches not affecting the decision of players
 - Cutoff of the search tree and heuristics

CS 1571 Introduction to Al

KR and logic

- Knowledge representation:
 - Syntax (how sentences are build), Semantics (meaning of sentences), Computational aspect (how sentences are manipulated)
- Logic:
 - A formal language for expressing knowledge and ways of reasoning
 - Three components:
 - A set of sentences
 - A set of interpretations
 - The valuation (meaning) function

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- A language for symbolic reasoning
- Language:
 - Syntax, Semantics
- **Satisfiability** of a sentence: at least one interpretation under which the sentence can evaluate to *True*.
- Validity of a sentence: *True* in all interpretations
- Entailment: $KB \models \alpha$
 - α is true in all worlds in which KB is true
- Inference procedure
 - Soundness If $KB \vdash_i \alpha$ then $KB \models \alpha$
 - Completeness If $KB \models \alpha$ then $KB \models_i \alpha$

CS 1571 Intro to Al

Propositional logic

- Logical inference problem: $KB = \alpha$?
 - Does KB entail the sentence α ?
- Logical inference problem for the propositional logic is decidable.
 - A procedure (program) that stops in finite time exists
- · Approaches:
 - Truth table approach
 - Inference rule approach
 - Resolution refutation

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

• Normal forms: DNF, CNF, Horn NF (conversions)

CS 1571 Intro to Al

M. Hauskrecht

First order logic

- Deficiencies of propositional logic
- **First order logic (FOL):** allows us to represent objects, their properties, relations and statements about them
 - Variables, predicates, functions, quantifiers
 - Syntax and semantics of the sentences in FOL
- Logical inference problem $KB \models \alpha$?
 - Undecidable. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.
- Inference approaches:
 - Inference rules
 - Resolution refutation

First order logic

- Methods for making inferences work with variables:
 - Variable substitutions
 - Unification process that takes two similar sentences and computes the substitution that makes that makes them look the same, if it exists
- Conversions to CNF with universally quantified variables
 - Used by resolution refutation
 - The procedure is refutation- complete

CS 1571 Intro to Al

M. Hauskrecht

Knowledge-based systems with HNF

- KBs in Horn normal form:
 - Not all sentences in FOL can be translated to HNF
 - Modus ponens is complete for Horn databases
- **Inferences** with KBs in Horn normal form (HNF)
 - Forward chaining
 - Backward chaining
- · Production systems
 - Conflict resolution

CS 1571 Intro to Al

Planning

- Find a sequence of actions that lead to a goal
 - Much like path search, but for very large domains
 - Need to represent the dynamics of the world
- Two basic approaches planning problem representation:
 - Situation calculus
 - Explicitly represents situations (extends FOL)
 - Solving: theorem proving
 - STRIPS
 - · Add and delete list
 - **Solving:** Search (Goal progression, Goal regression)
- Frame problem

CS 1571 Intro to Al

M. Hauskrecht

Planning

- Divide and conquer approach (Sussman's anomaly)
- State space vs. plan space search
- Partial order (non-linear) planners:
 - Search the space of partially build plans
 - Progressive or regressive mode
- Hierarchical planners

CS 1571 Intro to Al

Uncertainty

- Basics of probability:
 - random variable, values, probability distribution
- Joint probability distribution
 - Over variables in a set, **full joint** over all variables
 - Marginalization (summing out)
- Conditional probability distribution

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

- Product rule P(A,B) = P(A|B)P(B)
- Chain rule
- Bayes rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

CS 1571 Intro to A

M. Hauskrecht

Uncertainty

Full joint probability distribution

- Over variables in a set, **full joint** over all variables

Two important things to remember:

- Any probabilistic query can be computed from the full joint distribution
- Full joint distribution can be expressed as a product of conditionals via the chain rule

CS 1571 Intro to Al

Bayesian belief networks

- Full joint distribution over all random variables defining the domain can be very large
 - Complexity of a model, inferences, acquisition
- Solution: Bayesian belief networks (BBNs)
- Two components of BBNs:
 - Structure (directed acyclic graph)
 - Parameters (conditional prob. distributions)
- **BBN** build upon conditional independence relations:

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

- Joint probability distribution for BBNs:
 - Product of local (variable-parents) conditionals

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1, n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

CS 1571 Intro to Al

M Hauskroch

Bayesian belief networks

- Model of the joint distribution:
 - Reduction in the number of parameters
- Inferences:
 - Queries on joint probabilities
 - Queries on conditionals expressed as ratios of joint probabilities
 - Joint probabilities can be expressed in terms of full joints
 - Full joints are product of local conditionals
- Smart way to do inferences:
 - Interleave sums and products (variable elimination)

CS 1571 Intro to AI M. Hauskrecht

Decision-making in the presence of uncertainty

• Decision tree:

- Decision nodes (choices are made)
- Chance nodes (reflect stochastic outcome)
- Outcomes (value) nodes (value of the end-situation)

• Rational choice:

- Decision-maker tries to optimize the expected value

• Use utilities to define the rational choice:

- utility (or expected utility) is typically different from the expected value under uncertainty;
- Example: the utility function for the risk-averse investor differs from the expected value

CS 1571 Intro to Al

M. Hauskrecht

Machine learning

• Types of machine learning:

- Supervised
- Unsupervised
- Reinforcement learning

• Typical learning:

- Find a model with parameters to fit the data
- Optimize the parameters to assure the best fit
- Different error criteria:
 - Mean squared error
 - Likelihood of data

CS 1571 Intro to Al

Machine learning

- Simple learning problem:
 - A model of a biased coin
 - $-\theta = P(outcome = head)$
 - P(outcome = tail) = 1 P(outcome = head) = 1 θ
- **Maximum likelihood estimate the parameter**
 - calculated from data (observed sequence of outcomes)

$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

- $\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$ N₁ number of heads seen, N₂ number of tails seen
- Learning parameters of the BBN
 - Convert to many simple (coin) learning problems

CS 1571 Intro to Al