Review

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Search

• Basic definition of the search problem
 – Search space, operators, initial state, goal condition

• Formulation of a problem:
 – We have some control over the complexity of the search space size

• Two types:
 – Path vs. configuration search
Search

- Methods for searching the search space:
- Search trace captured by the search tree

- Search methods properties:
 - Completeness, Optimality, Space and time complexity.

- Complexities
 - measured in terms of a branching factor \(b \), depth of the optimal solution \(d \), maximum depth of the state space \(m \)

Search

- Uninformed methods:
 - Breadth first search, Depth first search, Iterative deepening, Bi-directional search, Uniform cost search (for the weighted path search)

- Informed methods:
 - Heuristic function \(h \): potential of a state to reach the goal
 - Evaluation function \(f \) : desirability of a state to be expanded next
 - Best first search:
 - Greedy \(f(n) = h(n) \)
 - A*:
 \[f(n) = g(n) + h(n) \]
 the role of admissible heuristics, optimality
Search

• Constraint satisfaction problem (CSP)
 – Variables, constraints on values (reflect the goal)
 – Formulation of a CSP as search
 – Methods and heuristics for CSP search
 • Backtracking, constraint propagation, most constrained variable, least constrained value

• Complex configuration searches. Use iterative algorithms:
 – Methods: Hill climbing, Simulated annealing, Genetic algorithms
 – Advantage: memory!! Useful for very large optimization problems.

Search

• Adversarial search (game playing)
 – Specifics of a game search, game problem formulation
 – rational opponent

• Algorithms:
 – Minimax algorithm
 • Complexity bottleneck for large games
 – Alpha-Beta pruning: prunes branches not affecting the decision of players
 – Cutoff of the search tree and heuristics
KR and logic

- **Knowledge representation:**
 - Syntax (how sentences are build), Semantics (meaning of sentences), Computational aspect (how sentences are manipulated)

- **Logic:**
 - A formal language for expressing knowledge and ways of reasoning
 - **Three components:**
 - A set of sentences
 - A set of interpretations
 - The valuation (meaning) function

Propositional logic

- A language for symbolic reasoning

- **Language:**
 - Syntax, Semantics

- **Satisfiability** of a sentence: at least one interpretation under which the sentence can evaluate to *True*.

- **Validity** of a sentence: *True* in all interpretations

- **Entailment:** $KB \models \alpha$
 - α is true in all worlds in which KB is true

- **Inference procedure**
 - Soundness If $KB \models \alpha$ then $KB \models \alpha$
 - Completeness If $KB \models \alpha$ then $KB \models \alpha$
Propositional logic

• **Logical inference problem**: $KB \models \alpha$?
 – Does KB entail the sentence α?

• Logical inference problem for the propositional logic is **decidable**.
 – A procedure (program) that stops in finite time exists

• **Approaches**:
 – Truth table approach
 – Inference rule approach
 – Resolution refutation

\[
\begin{align*}
KB \models \alpha \quad &\text{if and only if} \\
(KB \land \neg \alpha) \quad &\text{is unsatisfiable}
\end{align*}
\]

• **Normal forms**: DNF, CNF, Horn NF (conversions)

First order logic

• Deficiencies of propositional logic

• **First order logic (FOL)**: allows us to represent objects, their properties, relations and statements about them
 – Variables, predicates, functions, quantifiers
 – Syntax and semantics of the sentences in FOL

• **Logical inference problem** $KB \models \alpha$?
 – **Undecidable**. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

• **Inference approaches**:
 – Inference rules
 – Resolution refutation
First order logic

- **Methods for making inferences work with variables:**
 - Variable substitutions
 - Unification process that takes two similar sentences and computes the substitution that makes them look the same, if it exists

- **Conversions to CNF** with universally quantified variables
 - Used by resolution refutation
 - The procedure is refutation-complete

Knowledge-based systems with HNF

- **KBs in Horn normal form:**
 - Not all sentences in FOL can be translated to HNF
 - Modus ponens is complete for Horn databases

- **Inferences** with KBs in Horn normal form (HNF)
 - Forward chaining
 - Backward chaining

- **Production systems**
 - Conflict resolution
Planning

• **Find a sequence of actions** that lead to a goal
 – Much like path search, but for very large domains
 – Need to represent the dynamics of the world

• **Two basic approaches** planning problem representation:
 – **Situation calculus**
 • Explicitly represents situations (extends FOL)
 • **Solving:** theorem proving
 – **STRICT**
 • Add and delete list
 • **Solving:** Search
 (Goal progression, Goal regression)

• **Frame problem**

Planning

• **Divide and conquer approach** (Sussman’s anomaly)

• **State space vs. plan space search**

• **Partial order (non-linear) planners:**
 – Search the space of partially build plans
 – Progressive or regressive mode

• **Hierarchical planners**
Uncertainty

- **Basics of probability:**
 - random variable, values, probability distribution
- **Joint probability distribution**
 - Over variables in a set, **full joint** over all variables
 - Marginalization (summing out)
- **Conditional probability distribution**
 \[P(A \mid B) = \frac{P(A, B)}{P(B)} \text{ s.t. } P(B) \neq 0 \]
- **Product rule**
 \[P(A, B) = P(A \mid B)P(B) \]
- **Chain rule**
- **Bayes rule**
 \[P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)} \]

Uncertainty

Full joint probability distribution
- Over variables in a set, **full joint** over all variables

Two important things to remember:
- Any probabilistic query can be computed from the full joint distribution
- Full joint distribution can be expressed as a product of conditionals via the chain rule
Bayesian belief networks

• **Full joint distribution** over all random variables defining the domain can be very large
 – Complexity of a model, inferences, acquisition
• **Solution:** Bayesian belief networks (BBNs)
• **Two components of BBNs:**
 – Structure (directed acyclic graph)
 – Parameters (conditional prob. distributions)
• BBN build upon conditional independence relations:
 \[P(A, B \mid C) = P(A \mid C)P(B \mid C) \]
• **Joint probability distribution for BBNs:**
 – Product of local (variable-parents) conditionals
 \[P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^{n} P(X_i \mid pa(X_i)) \]

Bayesian belief networks

• **Model of the joint distribution:**
 – Reduction in the number of parameters
• **Inferences:**
 – Queries on joint probabilities
 – Queries on conditionals expressed as ratios of joint probabilities
 – Joint probabilities can be expressed in terms of full joints
 – Full joints are product of local conditionals
• **Smart way to do inferences:**
 – Interleave sums and products (variable elimination)
Decision-making in the presence of uncertainty

- **Decision tree:**
 - Decision nodes (choices are made)
 - Chance nodes (reflect stochastic outcome)
 - Outcomes (value) nodes (value of the end-situation)

- **Rational choice:**
 - Decision-maker tries to optimize the expected value

- **Use utilities to define the rational choice:**
 - Utility (or expected utility) is typically different from the expected value under uncertainty;
 - Example: the utility function for the risk-averse investor differs from the expected value

Machine learning

- **Types of machine learning:**
 - Supervised
 - Unsupervised
 - Reinforcement learning

- **Typical learning:**
 - Find a model with parameters to fit the data
 - Optimize the parameters to assure the best fit
 - Different error criteria:
 - Mean squared error
 - Likelihood of data
Machine learning

• **Simple learning problem:**
 – A model of a biased coin
 – $\theta = P(\text{outcome} = \text{head})$
 – $P(\text{outcome} = \text{tail}) = 1 - P(\text{outcome} = \text{head}) = 1 - \theta$

• **Maximum likelihood estimate the parameter**
 – calculated from data (observed sequence of outcomes)

\[
\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}
\]

 – N_1 – number of heads seen, N_2 – number of tails seen

• Learning parameters of the BBN
 – Convert to many simple (coin) learning problems