CS 1571 Introduction to AI Lecture 25

Intro to Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Machine Learning

- The field of machine learning studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment
- The need for building agents capable of learning is everywhere
 - Predictions in medicine, text classification, speech recognition, image/text retrieval, commercial software
- Machine learning is not only the deduction but induction of rules from examples that facilitate prediction and decision making

Learning

Learning process:

Learner (a computer program) takes data **D** representing past experiences and tries to either:

- to develop an appropriate response to future data, or
- describe in some meaningful way the data seen

Example:

Learner sees a set of past patient cases (patient records) with corresponding diagnoses. It can either try:

- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms
 (e.g. builds a Bayesian network for them)

CS 1571 Intro to AI

Types of learning

Supervised learning

- Learning mapping between inputs x and desired outputs y
- Teacher gives me y's for the learning purposes

• Unsupervised learning

- Learning relations between data components
- No specific outputs given by a teacher

· Reinforcement learning

- Learning mapping between inputs x and desired outputs y
- Critic does not give me y's but instead a signal (reinforcement) of how good my answer was

• Other types of learning:

- Concept learning, explanation-based learning, etc.

Supervised learning

Data: $D = \{d_1, d_2, ..., d_n\}$ a set of *n* examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,..., n$

Two types of problems:

• Regression: X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

CS 1571 Intro to AI

Supervised learning examples

• Regression: Y is continuous

Debt/equity

Earnings

Future product orders

company stock price

• Classification: Y is discrete

Handwritten digit (array of 0,1s)

Unsupervised learning

• **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y

Objective:

- learn relations between samples, components of samples

Types of problems:

- Clustering
 Group together "similar" examples, e.g. patient cases
- Density estimation
 - Model probabilistically the population of samples, e.g. relations between the diseases, symptoms, lab tests etc.

CS 1571 Intro to AI

Unsupervised learning example.

• **Density estimation.** We want to build the probability model of a population from which we draw samples $d_i = \mathbf{x}_i$

Unsupervised learning. Density estimation

- A probability density of a point in the two dimensional space
 - Model used here: Mixture of Gaussians

CS 1571 Intro to AI

Reinforcement learning

- We want to learn: $f: X \to Y$
- We see samples of **x** but not y
- Instead of y we get a feedback (reinforcement) from a **critic** about how good our output was

• The goal is to select output that leads to the best reinforcement

Typical learning

Assume we have an access to the dataset D (past data)

Three basic steps:

- Select a model with parameters
- Select the error function to be optimized
 - Reflects the goodness of fit of the model to the data
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error represent the best fit of the model to the data

CS 1571 Intro to AI

Learning

• Assume we see examples of pairs (\mathbf{x}, y) and we want to learn the mapping $f: X \to Y$ to predict future ys for values of \mathbf{x}

Learning bias

- **Problem:** many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- We choose a class of functions. Say we choose a linear function: f(x) = ax + b

Learning

- Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b
 - One for every pair of parameters a, b

Learning

- Optimize the model using some criteria that reflects the fit of the model to data
- Example: mean squared error

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

CS 1571 Intro to AI

Typical learning

Assume we have an access to the dataset D (past data)

Three basic steps:

• Select a model with parameters

$$f(x) = ax + b$$

- Select the error function to be optimized
 - Reflects the goodness of fit of the model to the data

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error represent the best fit of the model to the data

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail Data: D a sequence of outcomes x_i such that

• head $x_i = 1$ • tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$ from data

CS 1571 Intro to AI

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

Heads: 15Tails: 10

What would be your estimate of the probability of a head?

$$\widetilde{\theta} = ?$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

Heads: 15Tails: 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter θ

CS 1571 Intro to AI

Probability of an outcome

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$ • tail $x_i = 0$
- **Model:** probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$$D = H H T H T H$$
 (encoded as $D = 110101$)

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = ?$$

CS 1571 Intro to AI

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta (1 - \theta)\theta (1 - \theta)\theta$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$ • tail $x_i = 0$
- **Model:** probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

likelihood of the data

CS 1571 Intro to AI

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta (1 - \theta)\theta (1 - \theta)\theta$$
$$P(D \mid \theta) = \prod_{i=0}^{6} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ **Our learning goal:**

• Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Intuition:

• more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

CS 1571 Intro to AI

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \arg \max_{\theta} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log (1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1-\theta) \sum_{i=1}^{n} (1-x_i)$$

$$N_1 - \text{number of heads seen} \qquad N_2 - \text{number of tails seen}$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$l(D,\theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

Solving

$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:

$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

CS 1571 Intro to AI

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- · Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTTTTHTHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of head and tail?

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$

Tail:
$$(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$$

Pneumonia

Data D (different patient cases):

T T T F F \mathbf{T} \mathbf{T} \mathbf{T}

Pal Fev Cou HWB Pneu

T

T

T T F

CS 1571 Intro to AI

Estimates of parameters of BBN

- Much like multiple coin tosses
- A "smaller" learning problem corresponds to the learning of exactly one conditional distribution
- **Example:**

 $\mathbf{P}(Fever \mid Pneumonia = T)$

Problem: How to pick the data to learn?

Data D (different patient cases):

 Pal
 Fev
 Cou HWB
 Pneu

 T
 T
 T
 F

 T
 F
 F
 F

 F
 F
 T
 T
 T

 F
 T
 T
 T
 T
 T

 F
 T
 T
 F
 F
 F
 F
 F
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T

How to estimate:

 $\mathbf{P}(Fever \mid Pneumonia = T) = ?$

CS 1571 Intro to AI

Learning of BBN parameters. Example.

Learn: $P(Fever \mid Pneumonia = T)$

Step 1: Select data points with Pneumonia=T

 Pal
 Fev
 Cou HWB
 Pneu

 T
 T
 T
 F

 T
 F
 F
 F

 F
 F
 F
 F

 F
 F
 T
 T
 T

 F
 T
 T
 T
 T
 T

 F
 F
 F
 F
 F
 F
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T

Learn: $P(Fever \mid Pneumonia = T)$

Step 1: Ignore the rest

Pal Fev Cou HWB Pneu

F	F	T	T	T	
F	F	T	F	T	
F	T	T	T	T	
T	T	T	T	T	
•	TEN.		and the same	CID.	

CS 1571 Intro to AI

Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia = T)

Step 2: Select values of the random variable defining the distribution of Fever

Pal Fev Cou HWB Pneu

F	F	T	T	T
F	\mathbf{F}	T	F	T
F	T	T	T	T
T	T	T	T	T
F	T	F	T	T

Learn: $P(Fever \mid Pneumonia = T)$

Step 2: Ignore the rest

Fev F T T

CS 1571 Intro to AI

Learn: $P(Fever \mid Pneumonia = T)$

Step 3: Learning the ML estimate

