Decision making in the presence of uncertainty

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Decision-making in the presence of uncertainty

• Many real-world problems require to choose future actions in the presence of uncertainty
• Examples: patient management, investments

Main issues:
• How to model the decision process in the computer?
• How to make decisions about actions in the presence of uncertainty?
(Stochastic) Decision tree

- **Decision tree:**

 - **Stock 1**
 - 102
 - 0.6 (up) 110
 - 0.4 (down) 90
 - **Stock 2**
 - 104
 - 0.4 (up) 140
 - 0.6 (down) 80
 - **Bank**
 - 101
 - 1.0 (up) 102
 - (down) 101
 - **Home**
 - 100
 - 1.0 (up) 104
 - (down) 101

- **decision node**
- **chance node**
- **outcome (value) node**

Sequential (multi-step) problems

The decision tree can be build to capture multi-step decision problems:
- Choose an action
- Observe the stochastic outcome
- And repeat

How to make decisions for multi-step problems?
- Start from the leaves of the decision tree (outcome nodes)
- Compute expectations at chance nodes
- Maximize at the decision nodes

Algorithm is sometimes called **expectimax**
Multi-step problem example

Assume:
- Two investment periods
- Two actions: stock and bank

Information-gathering actions
- Many actions and their outcomes irreversibly change the world
- **Information-gathering (exploratory) actions:**
 - make an inquiry about the world
 - **Key benefit:** reduction in the uncertainty
- **Example: medicine**
 - Assume a patient is admitted to the hospital with some set of initial complaints
 - We are uncertain about the underlying problem and consider a surgery, or a medication to treat them
 - But there are often lab tests or observations that can help us to determine more closely the disease the patient suffers from
 - **Goal of lab tests:** Reduce the uncertainty of outcomes of treatments so that better treatment option can be chosen
Decision-making with exploratory actions

In decision trees:

- **Exploratory actions** can be represented and reasoned about the same way as other actions.

How do we capture the effect of exploratory actions in the decision tree model?

- Information obtained through exploratory actions may affect the probabilities of later outcomes
 - Recall that the probabilities on later outcomes can be conditioned on past observed outcomes and past actions
 - Sequence of past actions and outcomes is “remembered” within the decision tree branch

Oil wildcatter problem.

An oil wildcatter has to make a decision of whether to drill or not to drill on a specific site

- **Chance of hitting an oil deposit:**
 - Oil: 40% \(P(Oil = T) = 0.4 \)
 - No-oil: 60% \(P(Oil = F) = 0.6 \)

- **Cost of drilling**: 70K

- **Payoffs**:
 - Oil: 220K
 - No-oil: 0 K
Oil wildcatter problem.

An oil wildcatter has to make a decision of whether to drill or not to drill on a specific site

- **Chance of hitting an oil deposit:**
 - Oil: 40% \(P(\text{Oil} = T) = 0.4 \)
 - No-oil: 60% \(P(\text{Oil} = F) = 0.6 \)

- **Cost of drilling:** 70K

- **Payoffs:**
 - Oil: 220K
 - No-oil: 0 K

Oil wildcatter problem

- Assume that in addition to the drill/no-drill choices we have an option to run the **seismic resonance test**

- **Seismic resonance test results:**
 - Closed pattern (more likely when the hole holds the oil)
 - Diffuse pattern (more likely when empty)

\[
P(\text{Oil} | \text{Seismic resonance test})
\]

<table>
<thead>
<tr>
<th>\text{Seismic resonance test pattern}</th>
<th>closed</th>
<th>diffuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{True}</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>\text{False}</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- **Test cost:** 10K
Oil wildcatter problem.

- Decision tree

- Alternative model
Oil wildcatter problem.

- Decision tree probabilities

\[
P(\text{Oil} | \text{Test} = \text{closed}) = \frac{P(\text{Test} = \text{closed} | \text{Oil} = \text{closed}) P(\text{Oil} = \text{closed})}{P(\text{Test} = \text{closed})}
\]

\[
P(\text{Oil} = \text{F} | \text{Test} = \text{closed}) = \frac{P(\text{Test} = \text{closed} | \text{Oil} = \text{F}) P(\text{Oil} = \text{F})}{P(\text{Test} = \text{closed})}
\]

\[
\begin{align*}
P(\text{Test} = \text{closed}) &= P(\text{Test} = \text{closed} | \text{Oil} = \text{F}) P(\text{Oil} = \text{F}) + P(\text{Test} = \text{closed} | \text{Oil} = \text{T}) P(\text{Oil} = \text{T}) \\
P(\text{Test} = \text{diff}) &= P(\text{Test} = \text{diff} | \text{Oil} = \text{F}) P(\text{Oil} = \text{F}) + P(\text{Test} = \text{diff} | \text{Oil} = \text{T}) P(\text{Oil} = \text{T})
\end{align*}
\]
Oil wildcatter problem.

- Decision tree

The presence of the test and its result affected our decision:

- if test = closed then drill
- if test = diffuse then do not drill
Value of information

- **When the test makes sense?**
- Only when its result makes the decision maker to change his mind, that is he decides not to drill.

- **Value of information:**
 - Measure of the goodness of the information from the test
 - Difference between the expected value with and without the test information

- **Oil wildcatter example:**
 - Expected value without the test = 18
 - Expected value with the test = 25.4
 - Value of information for the seismic test = 7.4

Selection based on expected values

- **Until now:** The optimal action choice was the option that maximized the expected monetary value.
- **But is the expected monetary value always the quantity we want to optimize?**
Selection based on expected values

- Is the expected monetary value always the quantity we want to optimize?
- **Answer:** Yes, but only if we are risk-neutral.

- But what if we do not like the risk (we are risk-averse)?
- In that case we may want to get the premium for undertaking the risk (of loosing the money)
- **Example:**
 - we may prefer to get $101 for sure against $102 in expectation but with the risk of loosing the money
- **Problem:** How to model decisions and account for the risk?
- **Solution:** use utility function, and utility theory

Utility function

- **Utility function** (denoted U)
 - Quantifies how we “value” outcomes, i.e., it reflects our preferences
 - Can be also applied to “value” outcomes other than money and gains (e.g. utility of a patient being healthy, or ill)
- **Decision making:**
 - uses expected utilities (denoted EU)
 \[
 EU(\ X) = \sum_{x \in \Omega_x} P(X = x)U(X = x)
 \]
 \[
 U(X = x) \quad \text{the utility of outcome } x
 \]

Important !!!

- Under some conditions on preferences we can always design the utility function that fits our preferences
Utility theory

- Defines axioms on preferences that involve uncertainty and ways to manipulate them.
- Uncertainty is modeled through lotteries
 - **Lottery:**
 \[[p : A; (1 - p) : C] \]

 - Outcome A with probability p
 - Outcome C with probability (1-p)

- The following six constraints are known as the axioms of utility theory. The axioms are the most obvious semantic constraints on preferences with lotteries.

- **Notation:**
 - \(\succ \) - preferable
 - \(\sim \) - indifferent (equally preferable)

Axioms of the utility theory

- **Orderability:** Given any two states, the a rational agent prefers one of them, else the two as equally preferable.
 \[(A \succ B) \lor (B \succ A) \lor (A \sim B)\]

- **Transitivity:** Given any three states, if an agent prefers A to B and prefers B to C, agent must prefer A to C.
 \[(A \succ B) \land (B \succ C) \Rightarrow (A \succ C)\]

- **Continuity:** If some state B is between A and C in preference, then there is a \(p \) for which the rational agent will be indifferent between state B and the lottery in which A comes with probability p, C with probability (1-p).
 \[(A \succ B \succ C) \Rightarrow \exists p [p : A; (1 - p) : C] \sim B\]
Axioms of the utility theory

- **Substitutability:** If an agent is indifferent between two lotteries, \(A \) and \(B \), then there is a more complex lottery in which \(A \) can be substituted with \(B \).
 \[
 (A \sim B) \Rightarrow [p : A; (1 - p) : C] \sim [p : B; (1 - p) : C]
 \]

- **Monotonicity:** If an agent prefers \(A \) to \(B \), then the agent must prefer the lottery in which \(A \) occurs with a higher probability.
 \[
 (A \succ B) \Rightarrow (p > q \iff [p : A; (1 - p) : B] \succ [q : A; (1 - q) : B])
 \]

- **Decomposability:** Compound lotteries can be reduced to simpler lotteries using the laws of probability.
 \[
 [p : A; (1 - p) : [q : B; (1 - q) : C]] \Rightarrow [p : A; (1 - p)q : B; (1 - p)(1 - q) : C]
 \]

Utility theory

If the agent obeys the axioms of the utility theory, then

1. there exists a real valued function \(U \) such that:
 \[
 U(A) > U(B) \iff A \succ B
 \]
 \[
 U(A) = U(B) \iff A \sim B
 \]

2. The utility of the lottery is the expected utility, that is the sum of utilities of outcomes weighted by their probability
 \[
 U[p : A; (1 - p) : B] = pU(A) + (1 - p)U(B)
 \]

3. Rational agent makes the decisions in the presence of uncertainty by maximizing its expected utility
Utility functions

We can design a utility function that fits our preferences if they satisfy the axioms of utility theory.

- **But how to design the utility function for monetary values so that they incorporate the risk?**
- **What is the relation between utility function and monetary values?**
 - Assume we loose or gain $1000.
 - Typically this difference is more significant for lower values (around $100 -1000) than for higher values (~$1,000,000)
 - What is the relation between utilities and monetary value for a typical person?

- **What is the relation between utilities and monetary value for a typical person?**

- Concave function that flattens at higher monetary values
Utility functions

- Expected utility of a sure outcome of 750 is 750

Assume a lottery $L = [0.5: 500, 0.5:1000]$
- Expected value of the lottery = 750
- Expected utility of the lottery $EU(L)$ is different:

 $EU(L) = 0.5U(500) + 0.5*U(1000)$
Utility functions

- Expected utility of the lottery $EU(\text{lottery } L) < EU(\text{sure } 750)$

- Risk aversion – a bonus is required for undertaking the risk

Decision making with utility function

- Original problem with monetary outcomes
Decision making with the utility function

- Utility function log (x)

<table>
<thead>
<tr>
<th>Stock 1</th>
<th>Stock 2</th>
<th>Bank</th>
<th>Home</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00653</td>
<td>2.0003</td>
<td>2.004</td>
<td>2.000</td>
</tr>
<tr>
<td>0.6</td>
<td>0.4</td>
<td>0.4</td>
<td>1.0</td>
</tr>
<tr>
<td>0.4</td>
<td>(up)</td>
<td>(up)</td>
<td>(up)</td>
</tr>
<tr>
<td>1.9542</td>
<td>(down)</td>
<td>2.1461</td>
<td>2.0043</td>
</tr>
<tr>
<td>2.0413</td>
<td>1.9030</td>
<td>1.9030</td>
<td>2.0000</td>
</tr>
<tr>
<td>(down)</td>
<td>(down)</td>
<td>(down)</td>
<td>(down)</td>
</tr>
</tbody>
</table>