CS 1571 Introduction to AI Lecture 20

Modeling uncertainty

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Modeling the uncertainty.

Key challenges:

- How to represent nondeterministic (stochastic) relations?
- How to manipulate such knowledge to make inferences?
 - Humans can reason with uncertainty.

CS 1571 Intro to Al

Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

Facts (propositional statements)

Are represented via random variables with two or more values

Example: *Pneumonia* is a random variable

values: True and False

• Each value can be achieved with some probability:

$$P(Pneumonia = True) = 0.001$$

$$P(WBCcount = high) = 0.005$$

CS 1571 Intro to Al

M. Hauskrecht

Probability theory

- Well-defined theory for representing and manipulating statements with uncertainty
- Axioms of probability:

For any two propositions A, B.

- 1. $0 \le P(A) \le 1$
- 2. P(True) = 1 and P(False) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

CS 1571 Intro to Al

Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.

- Propositions:
 - statements about the world
 - Represented by the assignment of values to random variables
- Random variables:
- ! Boolean Pneumonia is either True, False

Random variable Values

- ! Multi-valued Pain is one of {Nopain, Mild, Moderate, Severe} Random variable Values
 - Continuous

 HeartRate is a value in <0;250>
 Random variable Values

CS 1571 Intro to Al

M. Hauskrecht

Probabilities

Unconditional probabilities

P(Pneumonia) = 0.001 or P(Pneumonia = True) = 0.001

P(Pneumonia = False) = 0.999

P(WBCcount = high) = 0.005

Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive

P(Pneumonia = True) = 0.001P(Pneumonia = False) = 0.999

Pneumonia	P(Pneumonia)
True	0.001
False	0.999

CS 1571 Intro to Al

Probability distribution

Defines probability for all possible value assignments

Example 1:

P(Pneumonia = True) = 0.001P(Pneumonia = False) = 0.999

Pneumonia	P(Pneumonia)
True	0.001
False	0.999

P(Pneumonia = True) + P(Pneumonia = False) = 1**Probabilities sum to 1!!!**

Example 2:

P(WBCcount = high) = 0.005 P(WBCcount = normal) = 0.993P(WBCcount = high) = 0.002

WBCcount	P(WBCcount)
high	0.005
normal	0.993
low	0.002

CS 1571 Intro to Al

M. Hauskrecht

Joint probability distribution

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments of values to variables in the set

Example: variables Pneumonia and WBCcount

P(pneumonia, WBCcount)

Is represented by 2×3 matrix

WBCcount

Pneumonia

	high	normal	low
True	0.0008	0.0001	0.0001
False	0.0042	0.9929	0.0019

CS 1571 Intro to Al

Joint probabilities

Marginalization

- reduces the dimension of the joint distribution
- · Sums variables out

P(pneumonia, WBCcount) 2×3 matrix

WBCcount normal low high True 0.0001 0.0001 0.001 0.0008 0.999 False 0.0019 0.0042 0.9929 0.993 0.002 0.005

Pneumonia

P(WBCcount)

Marginalization (here summing of columns or rows)

CS 1571 Intro to Al

M. Hauskrecht

P(*Pneumonia*)

Marginalization

Marginalization

• reduces the dimension of the joint distribution

$$P(X_1, X_2, \dots X_{n-1}) = \sum_{\{X_n\}} P(X_1, X_2, \dots X_{n-1}, X_n)$$

• We can continue doing this

$$P(X_2,...X_{n-1}) = \sum_{\{X_1,X_n\}} P(X_1,X_2,...X_{n-1},X_n)$$

What is the maximal joint probability distribution?

Full joint probability

CS 1571 Intro to Al

Full joint distribution

- the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem

Example: pneumonia diagnosis

Variables: *Pneumonia, Fever, Paleness, WBCcount, Cough*Full joint defines the probability for all possible assignments of values to *Pneumonia, Fever, Paleness, WBCcount, Cough*

5 variables: full joint is a captured by a 5-dimensional table

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=T)

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=F)

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=F,Paleness=T)

... etc

CS 1571 Intro to Al

M. Hauskrecht

Full joint distribution

• Any joint probability for a subset of variables can be obtained from the full joint via marginalization

 $P(Pneumonia, WBCcount, Fever) = \sum_{c,p=\{T,F\}} P(Pneumonia, WBCcount, Fever, Cough = c, Paleness = p)$

• Is it possible to recover full joint from the joint probabilities over a subset of variables?

CS 1571 Intro to Al

Full joint distribution

• Any joint probability for a subset of variables can be obtained from the full joint via marginalization

$$\begin{split} &P(Pneumonia, WBCcount, Fever) = \\ &\sum_{c,p = \{T,F\}} P(Pneumonia, WBCcount, Fever, Cough = c, Paleness = p) \end{split}$$

• Is it possible to recover the joint distribution for a set of variables from joint probabilities defined for its subsets?

CS 1571 Intro to Al

M. Hauskrecht

Relations among joint distributions

Assume:

	True	False
P(Pneumonia)	0.001	0.999
	True	False
P(Fever)	0.05	0.95

Can we unambiguously compute the joint over the two variables?

P(Fever, Pneumonia)	True	False
True	?	?
False	?	?

CS 1571 Intro to Al

Relations among joint distributions

Assume:	True	False
P(Pneumonia)	0.001	0.999
	True	False
P(Fever)	0.05	0.95

Can we unambiguously compute the joint over the two variables?

No! More than one probability value is possible for joint table entries

P(Fever, Pneumonia)	True	False
True	?	?
False	?	?

CS 1571 Intro to Al

M. Hauskrecht

Relations among joint distribution

Assume:

	True	False	
P(Pneumonia)	0.001	0.999	← 1 free parameter
	True	False	
P(Fever)	0.05	0.95	← 1 free parameter

Can we unambiguously compute the joint over the two variables?

The joint has more free parameters, the two individual distributions together

P(Fever, Pneumonia)	True	False	_
True	?	?	2 from normators
False	?	?	3 free parameters
	CC 1571 Int	ro to Al	M Hauskrecht

CS 1571 Intro to Al

Relations among joint distribution

Assume:

	True	False	
P(Pneumonia)	0.001	$0.999 \leftarrow 1$ free parame	ter
	True	False	
P(Fever)	0.05	$0.95 \leftarrow 1$ free parame	eter

Is there a condition that would let us unambiguously compute the joint over two variables?

Yes. When the two variables are independent!

P(Fever, Pneumonia)	True	False	_
True	?	?	2 from normation
False	?	?	3 free parameters
	CS 1571 Int	ro to Al	M. Hauskrecht

Relations among joint distribution

Assume:

False

P(Pneumonia=True)*P(Fever=True)

True

Conditional probabilities

Conditional probability distribution

• Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

$$P(Pneumonia = true | WBCcount = high)$$

P(*Pneumonia* | *WBCcount*) 3 element vector of 2 elements

WBCcount

Pneumonia

	high	normal	low
True	0.08	0.0001	0.0001
False	0.92	0.9999	0.9999
	1.0	1.0	1.0

P(Pneumonia = true | WBCcount = high)

+ P(Pneumonia = false | WBCcount = high)

CS 1571 Intro to Al

M. Hauskrecht

Conditional probabilities

Conditional probability

• Is defined in terms of the joint probability:

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

Example:

$$P(pneumonia=true | WBCcount=high) = \\ \frac{P(pneumonia=true, WBCcount=high)}{P(WBCcount=high)}$$

$$P(pneumonia = false | WBCcount = high) = \frac{P(pneumonia = false, WBCcount = high)}{P(WBCcount = high)}$$

CS 1571 Intro to Al

Conditional probabilities

Conditional probability distribution.

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

 Product rule. Join probability can be expressed in terms of conditional probabilities

$$P(A,B) = P(A|B)P(B)$$

• Chain rule. Any joint probability can be expressed as a product of conditionals

$$P(X_{1}, X_{2}, ... X_{n}) = P(X_{n} | X_{1}, ... X_{n-1}) P(X_{1}, ... X_{n-1})$$

$$= P(X_{n} | X_{1}, ... X_{n-1}) P(X_{n-1} | X_{1}, ... X_{n-2}) P(X_{1}, ... X_{n-2})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1}, ... X_{i-1})$$

CS 1571 Intro to Al

M. Hauskrecht

Bayes rule

Conditional probability.

$$P(A \mid B) = P(B \mid A)P(A)$$

Bayes rule:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

When is it useful?

 When we are interested in computing the diagnostic query from the causal probability

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- Reason: It is often easier to assess causal probability
 - E.g. Probability of pneumonia causing fever
 vs. probability of pneumonia given fever

CS 1571 Intro to Al

Bayes Rule in a simple diagnostic inference

- **Device** (equipment) operating *normally* or *malfunctioning*.
 - Operation of the device sensed indirectly via a sensor
- Sensor reading is either high or low

P(Device status)

normal	malfunctioning
0.9	0.1

P(Sensor reading | Device status)

Device\Sensor	high	low
normal	0.1	0.9
malfunctioning	0.6	0.4

CS 1571 Intro to Al

M. Hauskrecht

Bayes Rule in a simple diagnostic inference.

• **Diagnostic inference:** compute the probability of device operating normally or malfunctioning given a sensor reading

P(Device status | Sensor reading = high) = ?

$$= \begin{pmatrix} P(\text{Device status} = normal \mid \text{Sensor reading} = high) \\ P(\text{Device status} = malfunctio ning} \mid \text{Sensor reading} = high) \end{pmatrix}$$

- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate
- **Solution:** apply **Bayes rule** to reverse the conditioning variables

CS 1571 Intro to Al

Bayes rule

Assume a variable A with multiple values $a_1, a_2, \dots a_k$ Bayes rule can be rewritten as:

$$P(A = a_j | B = b) = \frac{P(B = b | A = a_j)P(A = a_j)}{P(B = b)}$$

$$= \frac{P(B = b | A = a_j)P(A = a_j)}{\sum_{i=1}^{k} P(B = b | A = a_j)P(A = a_j)}$$

Used in practice when we want to compute:

$$\mathbf{P}(A \mid B = b)$$
 for all values of $a_1, a_2, \dots a_k$

CS 1571 Intro to Al

M. Hauskrecht

Probabilistic inference

Various inference tasks:

• Diagnostic task. (from effect to cause)

$$\mathbf{P}(Pneumonia | Fever = T)$$

• Prediction task. (from cause to effect)

$$\mathbf{P}(Fever | Pneumonia = T)$$

• Other probabilistic queries (queries on joint distributions).

$$\mathbf{P}(Fever)$$

P(Fever, ChestPain)

CS 1571 Intro to Al

Inference

Any query can be computed from the full joint distribution !!!

Joint over a subset of variables is obtained through marginalization

$$P(A = a, C = c) = \sum_{i} \sum_{j} P(A = a, B = b_{i}, C = c, D = d_{j})$$

Conditional probability over set of variables, given other variables' values is obtained through marginalization and definition of conditionals

$$P(D = d \mid A = a, C = c) = \frac{P(A = a, C = c, D = d)}{P(A = a, C = c)}$$

$$= \frac{\sum_{i} P(A = a, B = b_{i}, C = c, D = d)}{\sum_{i} \sum_{j} P(A = a, B = b_{i}, C = c, D = d_{j})}$$

Inference

Any query can be computed from the full joint distribution !!!

• Any joint probability can be expressed as a product of conditionals via the **chain rule**.

$$P(X_{1}, X_{2}, ... X_{n}) = P(X_{n} | X_{1}, ... X_{n-1}) P(X_{1}, ... X_{n-1})$$

$$= P(X_{n} | X_{1}, ... X_{n-1}) P(X_{n-1} | X_{1}, ... X_{n-2}) P(X_{1}, ... X_{n-2})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1}, ... X_{i-1})$$

Sometimes it is easier to define the distribution in terms of conditional probabilities:

- E.g.
$$\mathbf{P}(Fever \mid Pneumonia = T)$$

 $\mathbf{P}(Fever \mid Pneumonia = F)$

CS 1571 Intro to Al

Modeling uncertainty with probabilities

- Defining the **full joint distribution** makes it possible to represent and reason with uncertainty in a uniform way
- We are able to handle an arbitrary inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember $O(d^n)$ numbers.
 - n number of random variables, d number of values
- Inference (time) complexity. To compute some queries requires $O(d_n^n)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

CS 1571 Intro to Al

M. Hauskrecht

Medical diagnosis example

- Space complexity.
 - Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
 WBCcount (3: high, normal, low), paleness (2: T,F)
 - Number of assignments: 2*2*2*3*2=48
 - We need to define at least 47 probabilities.
- Time complexity.
 - Assume we need to compute the marginal of Pneumonia=T from the full joint

$$P(Pneumonia = T) =$$

$$= \sum_{i \in T} \sum_{j \in T} \sum_{k = h} \sum_{n} \sum_{u \in T} P(Fever = i, Cough = j, WBCcount = k, Pale = u)$$

- Sum over: 2*2*3*2=24 combinations

CS 1571 Intro to Al

Modeling uncertainty with probabilities

- Knowledge based system era (70s early 80's)
 - Extensional non-probabilistic models
 - Solve the space, time and acquisition bottlenecks in probability-based models
 - froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general
- Breakthrough (late 80s, beginning of 90s)
 - Bayesian belief networks
 - Give solutions to the space, acquisition bottlenecks
 - Partial solutions for time complexities

CS 1571 Intro to Al

M. Hauskrecht

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

• A and B are conditionally independent given C

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$
$$P(A \mid C, B) = P(A \mid C)$$

CS 1571 Intro to Al

Alarm system example.

- Assume your house has an **alarm system** against **burglary**. You live in the seismically active area and the alarm system can get occasionally set off by an **earthquake**. You have two neighbors, **Mary** and **John**, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

Bayesian belief network.

1. Directed acyclic graph

- **Nodes** = random variables Burglary, Earthquake, Alarm, Mary calls and John calls
- Links = direct (causal) dependencies between variables.

 The chance of Alarm is influenced by Earthquake, The chance of John calling is affected by the Alarm

CS 1571 Intro to Al

Bayesian belief network.

2. Local conditional distributions

• relate variables and their parents

CS 1571 Intro to Al

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables

$$B=T, E=T, A=T, J=T, M=F$$

$$P(B=T, E=T, A=T, J=T, M=F) = P(B=T)P(E=T)P(A=T | B=T, E=T)P(J=T | A=T)P(M=F | A=T)$$

CS 1571 Intro to Al