CS 1571 Introduction to AI Lecture 2

Applications of AI Problem solving by searching

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Course administrivia

Instructor: Milos Hauskrecht

5329 Sennott Square milos@cs.pitt.edu

TA: Peter Djalaliev

6503 Sennott Square peterdj@cs.pitt.edu

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

AI applications: Software systems.

Diagnosis of: software, technical components

Adaptive systems

- Adapt to the user
- Examples:
 - Intelligent interfaces
 - Intelligent helper applications, intelligent tutoring systems
 - Web applications:
 - softbots, shopbots (see e.g. http://www.botspot.com/)

CS 1571 Intro to Al

M. Hauskrecht

AI applications: information retrieval.

- · Web search engines
 - Improve the quality of search
 - Rely on methods developed in AI
 - Add inferences
- Semantic web (or web 2):
 - From information to knowledge sharing
 - Ontology languages

CS 1571 Intro to Al

AI applications: Speech recognition.

- Speech recognition systems:
 - Early systems based on the Hidden Markov models
- Adaptive speech systems
 - Adapt to the user (training)
 - continuous speech
 - commercially available software (Nuance, IBM) http://www.nuance.com/naturallyspeaking/
- Multi-user speech recognition systems
 - Restricted (no training)
 - Voice command/voice activated devices
 - Customer support systems:
 - Airline schedules, baggage tracking;
 - Credit card companies

CS 1571 Intro to Al

M. Hauskrecht

Applications: Space exploration

Autonomous rovers, intelligent probes

Analysis of data

Telescope scheduling

CS 1571 Intro to Al

AI applications: Medicine.

- Medical diagnosis: QMR system. Internal medicine.
- Patient Monitoring and Alerting: Cerner
- Medical imaging

http://groups.csail.mit.edu/vision/medical-vision/index.html

Image guided surgery

 Classification of body structures and visualization

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Bioinformatics.

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of DNA micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

Example of a microarray used in gene sequencing

CS 1571 Intro to Al

AI applications: Transportation.

Autonomous vehicle control:

- ALVINN (CMU, Pomerleau 1993).
 - · Autonomous vehicle
 - Driving across US
- DARPA challenge (http://www.darpa.mil/grandchallenge/)
 - Drive across Mojave desert
 - 2004 no vehicle finished the course
 - 2005 5 vehicles finished
 - · Stanford team won
 - 2007 DARPA Urban Challenge
 - 60 miles in urban area settings
 - 6 vehicles finished, CMU won

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Transportation.

- Vision systems:
 - Automatic plate recognition

Pedestrian detection(Daimler-Benz)

- Traffic monitoring
- Route optimizations

Classification of images or its parts

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Game playing.

- Backgammon
 - TD-backgammon
 - a program that learned to play at the championship level (from scratch).
 - reinforcement learning
- Chess
 - Deep blue (IBM) program beats Kasparov.

- Bridge
- Etc.

AI applications.

- · Robotic toys
 - Sony's Aibo
 (http://www.us.aibo.com/)

• Irobot's Roomba vacuum cleaners

- · Humanoid robot
 - Honda's ASIMO (http://world.honda.com/robot/)

CS 1571 Intro to Al

M. Hauskrecht

Other application areas

- Text classification, document sorting:
 - Web pages, e-mails
 - Articles in the news
- Video, image classification
- Music composition, picture drawing
- Entertainment ©

CS 1571 Intro to Al

Topics

- Problem solving and search.
 - Formulating a search problem, Search methods,
 Combinatorial and Parametric Optimization.
- · Logic and knowledge representations.
 - Logic, Inference
- Planning.
 - Situation calculus, STRIPS, Partial-order planners,
- Uncertainty.
 - Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.
- Machine Learning.
 - A little

CS 1571 Intro to Al

M. Hauskrecht

Problem solving by searching

CS 1571 Intro to Al

Example

• Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem? Hardly, we just apply the standard formula:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

CS 1571 Intro to Al

M. Hauskrecht

Solving problems by searching

- Some problems have a straightforward solution
 - Just apply a known formula, or follow a standardized procedure

Example: solution of the quadratic equation

- Hardly a sign of intelligence
- More interesting problems require **search**:
 - more than one possible alternative needs to be explored before the problem is solved
 - the number of alternatives to search among can be very large, even infinite.

CS 1571 Intro to Al

Search example: Traveler problem

• Find a route from one city (Arad) to the other (Bucharest)

Example. Traveler problem

- Another flavor of the traveler problem:
 - find the route with **the minimum length** between S and T

Example. Puzzle 8.

• Find the sequence of the 'empty tile' moves from the initial game position to the designated target position

Initial position

Goal position

CS 1571 Intro to Al

M. Hauskrecht

Example. N-queens problem.

Find a configuration of n queens not attacking each other

A goal configuration

A bad configuration

CS 1571 Intro to Al

A search problem

is defined by:

- A search space:
 - The set of objects among which we search for the solution Example: objects = routes between cities, or N-queen configurations
- A goal condition
 - What are the characteristics of the object we want to find in the search space?
 - Examples:
 - Path between cities A and B
 - Path between A and B with the smallest number of links
 - Path between A and B with the shortest distance
 - Non-attacking n-queen configuration

CS 1571 Intro to Al

M. Hauskrecht

Search

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)
- Important to remember !!!
 - You can choose the **search space** and the **exploration policy**
 - These choices can have a profound effect on the efficiency of the solution

CS 1571 Intro to Al

- Many search problems can be naturally represented as graph search problems
- Typical example: Route finding
 - Map corresponds to the graph, nodes to cities, links to available connections between cities
 - Goal: find a route (path) in the graph from S to T

CS 1571 Intro to AI M. Hauskrecht

Graph search

- Less obvious conversion:
 - **Puzzle 8.** Find a sequence of moves from the initial configuration to the goal configuration.
 - nodes corresponds to states of the game,
 - links to valid moves made by the player

Graph search problem

- **States** game positions, or locations in the map that are represented by nodes in the graph
- Operators connections between cities, valid moves
- Initial state start position, start city
- Goal state target position (positions), target city (cities)

M. Hauskrecht

Graph search

- More complex versions of the graph search problems:
 - Find a minimal length path
 (= a route with the smallest number of connections, the shortest sequence of moves that solves Puzzle 8)

CS 1571 Intro to Al

- More complex versions of the graph search problems:
 - Find a minimum cost path(= a route with the shortest distance)

CS 1571 Intro to Al

M. Hauskrecht

Graph search

How to find the path in between S and T?

A strawman solution:

- 1. Generate systematically all sequences of 1, 2, 3, ... edges
- 2. Check if the sequence yields a path between S and T.

How to find the path in between S and T?

A strawman solution:

- 1. Generate systematically all sequences of 1, 2, 3, ... edges
- 2. Check if the sequence yields a path between S and T.

Graph search

How to find the path in between S and T?

A strawman solution:

- 1. Generate systematically all sequences of 1, 2, 3, ... edges
- 2. Check if the sequence yields a path between S and T.

Can we do better?

- We are not interested in sequences that do not start in S and that are not valid paths
- Solution:

Graph search

• Being smarter about the space we search for the solution pays off in terms of the search process efficiency.

CS 1571 Intro to Al

N-queens

Some problems can be converted to the graph search problems

- But some problems are harder and less intuitive
 - Take e.g. N-queens problem.

Goal configuration

- · Problem:
 - We look for a configuration, not a sequence of moves
 - No distinguished initial state, no operators (moves)

CS 1571 Intro to Al

M. Hauskrecht

N-queens

How to choose the search space for N-queens?

- Ideas? Search space:
 - all configurations of N queens on the board

• • • • •

- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal condition.

CS 1571 Intro to Al

N-queens

Search space:

- all configurations of N queens on the board
- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal state.

States are: N-queen configurations

Initial state: ?

Operators (moves)?

CS 1571 Intro to Al

M. Hauskrecht

N-queens

Search space:

- all configurations of N queens on the board
- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal condition.

Initial state: an arbitrary N-queen configuration Operators (moves): change a position of one queen

CS 1571 Intro to Al

N-queens

Is there an alternative way to formulate the N-queens problem as a search problem?

- Search space: configurations of 0,1,2, ... N queens
- Graph search:
 - States configurations of 0,1,2,...N queens
 - Operators: additions of a queen to the board
 - Initial state: 0 queens on the board

Graph search

M. Hauskrecht

A trick: generate a configuration step by step (one queen per step)

- States (nodes) correspond to configurations of 0,1,2,3,4 queens
- Links (operators) correspond to the addition of a queen

N-queens problems

• This is a different graph search problem when compared to Puzzle 8 or Route planning:

We want to find only the target configuration, not a path

Two types of graph search problems

- Path search
 - Find a path between states S and T
 - Example: traveler problem, Puzzle 8
 - Additional goal criterion: minimum length (cost) path
- Configuration search (constraint satisfaction search)
 - Find a state (configuration) satisfying the goal condition
 - Example: n-queens problem, design of a device with a predefined functionality
 - Additional goal criterion: "soft" preferences for configurations, e.g. minimum cost design

CS 1571 Intro to Al

Search problem

Search problems that can be represented or converted into a graph search problems can be defined in terms of:

Initial state

State (configuration) we start to search from (e.g. start city, initial game position)

Operators:

 Transform one state to another (e.g. valid connections between cities, valid moves in Puzzle 8)

Goal condition:

- Defines the target state (destination, winning position)
- Search space (the set of objects we search for the solution):
 - is now defined indirectly through:

the initial state + operators

CS 1571 Intro to Al

M. Hauskrecht

Traveler problem.

Traveler problem formulation:

States: different cities Initial state: city Arad

• Operators: moves to cities in the neighborhood

Goal condition: city Bucharest
Type of the problem: path search
Possible solution cost: path length

CS 1571 Intro to Al

Puzzle 8 example

Initial state

Goal state

Search problem formulation:

- States: tile configurations
- Initial state: initial configuration
- Operators: moves of the empty tile
- Goal: reach the winning configuration
- · Type of the problem: path search
- **Possible solution cost:** a number of moves

CS 1571 Intro to Al

M. Hauskrecht

N-queens problem

Initial configuration

Problem formulation:

- States: configurations of 0 to 4 queens on the board
- Initial state: no-queen configuration
- Operators: add a queen to the leftmost unoccupied column
- Goal: a configuration with 4 non-attacking queens
- Type of the problem: configuration search

CS 1571 Intro to Al

N-queens problem

Alternative formulation of N-queens problem

Bad goal configuration

Valid goal configuration

Problem formulation:

- States: different configurations of 4 queens on the board
- Initial state: an arbitrary configuration of 4 queens
- Operators: move one queen to a different unoccupied position
- Goal: a configuration with non-attacking queens
- Type of the problem: configuration search

CS 1571 Intro to Al

M. Hauskrecht

Comparison of two problem formulations

Solution 1:

Operators: switch one of the queens

 $\binom{16}{4}$ - all configurations

Solution 2:

Operators: add a queen to the leftmost unoccupied column

 $1+4+4^2+4^3+4^4<4^5$ - configurations altogether

CS 1571 Intro to Al

Even better solution to the N-queens

Solution 2:

Operators: add a queen to the leftmost unoccupied column $< 4^5$ - configurations altogether

Improved solution with a smaller search space

Operators: add a queen to the leftmost unoccupied column such that it does not attack already placed queens

$$\leq 1 + 4 + 4 * 3 + 4 * 3 * 2 + 4 * 3 * 2 * 1 = 65$$

- configurations altogether

CS 1571 Intro to Al

M. Hauskrecht

Formulating a search problem

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)
- Think twice before solving the problem by search:
 - Choose the **search space** and the **exploration policy**

CS 1571 Intro to Al