
M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 17

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Inference in first-order logic.
Production systems.

M. HauskrechtCS 1571 Intro to AI

Sentences in Horn normal form
• Horn normal form (HNF) in the propositional logic

– a special type of clause with at most one positive literal

• A clause with one literal, e.g. A, is also called a fact
• A clause representing an implication (with a conjunction of

positive literals in antecedent and one positive literal in
consequent), is also called a rule

• Generalized Modus ponens:
– is the complete inference rule for KBs in the Horn normal

form. Not all KBs are convertible to HNF !!!

)()(DCABA ∨¬∨¬∧¬∨
))(()(DCAAB ⇒∧∧⇒Typically written as:

M. HauskrechtCS 1571 Intro to AI

Horn normal form in FOL

First-order logic (FOL)
– adds variables and quantifiers, works with terms

Generalized modus ponens rule:

Generalized modus ponens:
• is complete for the KBs with sentences in Horn form;
• Not all first-order logic sentences can be expressed in this

form

),(
,',',' 2121

τσ
τφφφφφφ

SUBST
nn ⇒∧∧ KK

),()',(s.t.on substituti a ii SUBSTSUBSTi φσφσσ =∀=

M. HauskrechtCS 1571 Intro to AI

Forward and backward chaining

Two inference procedures based on modus ponens for Horn KBs:
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied.
Typical usage: infer all sentences entailed by the existing KB.

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule
prove the premises of the rule. Continue recursively.
Typical usage: If we want to prove that the target (goal)
sentence is entailed by the existing KB.

Both procedures are complete for KBs in Horn form !!!

α

M. HauskrechtCS 1571 Intro to AI

Forward chaining example
• Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the
conclusion. Continue with rules that became satisfied

),(),(),(zxFasterzyFasteryxFaster ⇒∧

KB: R1:

R2:

R3:

Assume the KB with the following rules:
),()()(yxFasterySailboatxSteamboat ⇒∧

),()()(zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

Theorem:),(PondArrowTitanicFaster

F1:

F2:

F3:

?

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:
F3:)(PondArrowRowBoat

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

?

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

Rule R1 is satisfied:

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

),(PondArrowMistralFaster
Rule R2 is satisfied:
F5:

Rule R1 is satisfied:

M. HauskrechtCS 1571 Intro to AI

Forward chaining example

)(TitanicSteamboat
)(MistralSailboat

KB: R1:
R2:
R3:

F1:
F2:

),(MistralTitanicFaster

F3:)(PondArrowRowBoat

F4:

),(),(),(zxFasterzyFasteryxFaster ⇒∧

),()()(yxFasterySailboatxSteamboat ⇒∧
),()()(zyFasterzRowBoatySailboat ⇒∧

),(PondArrowMistralFaster
Rule R2 is satisfied:
F5:
Rule R3 is satisfied:

),(PondArrowTitanicFasterF6:

Rule R1 is satisfied:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a rule
prove the antecedents (if part) of the rule & repeat recursively.

),()()(yxFasterySailboatxSteamboat ⇒∧

),()()(zyFasterzRowBoatySailboat ⇒∧

),(),(),(zxFasterzyFasteryxFaster ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

KB:

Theorem:),(PondArrowTitanicFaster

R1:

R2:

R3:

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowTitanicFaster

)(TitanicSteamboat

R1

)(PondArrowSailboat

),()()(yxFasterySailboatxSteamboat ⇒∧

),(PondArrowTitanicFaster
}/,/{ PondArrowyTitanicx

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

)(TitanicSteamboat
R1

),(PondArrowTitanicFaster

R2
)(TitanicSailboat

)(PondArrowRowBoat)(PondArrowSailboat

),(PondArrowTitanicFaster
}/,/{ PondArrowzTitanicy

),()()(zyFasterzRowBoatySailboat ⇒∧

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining example

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(MistralSailboat

)(TitanicSailboat

)(TitanicSteamboat

)(MistralSailboat

)(PondArrowRowBoat

F1:

F2:

F3:

M. HauskrechtCS 1571 Intro to AI

Backward chaining

),(PondArrowyFaster
)(TitanicSteamboat

R1

),(PondArrowTitanicFaster

R2

)(PondArrowRowBoat
),(yTitanicFaster

R3

)(TitanicSteamboat
R1

)(MistralSailboat

R2

)(PondArrowRowBoat

)(PondArrowSailboat

)(MistralSailboat

)(TitanicSailboat

y must be bound to
the same term

M. HauskrechtCS 1571 Intro to AI

Knowledge-based system

• Knowledge base:
– A set of sentences that describe the world in some formal

(representational) language (e.g. first-order logic)
– Domain specific knowledge

• Inference engine:
– A set of procedures that work upon the representational

language and can infer new facts or answer KB queries
(e.g. resolution algorithm, forward chaining)

– Domain independent

Knowledge base

Inference engine

M. HauskrechtCS 1571 Intro to AI

Automated reasoning systems
Examples and main differences:
• Theorem provers

– Prove sentences in the first-order logic. Use inference rules,
resolution rule and resolution refutation.

• Deductive retrieval systems
– Systems based on rules (KBs in Horn form)
– Prove theorems or infer new assertions (forward, backward

chaining)
• Production systems

– Systems based on rules with actions in antecedents
– Forward chaining mode of operation

• Semantic networks
– Graphical representation of the world, objects are nodes in

the graphs, relations are various links

M. HauskrechtCS 1571 Intro to AI

Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literals
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB (consistent with logic ?)
– QUERY the user, etc …

kn aaappp ,,, 2121 KK ⇒∧∧

M. HauskrechtCS 1571 Intro to AI

Production systems
Based on rules, but different from KBs in the Horn form
Knowledge base is divided into:
• A Rule base (includes rules)
• A Working memory (includes facts)

A special type of if – then rule

• Antecedent: a conjunction of literals
– facts, statements in predicate logic

• Consequent: a conjunction of actions. An action can:
– ADD the fact to the KB (working memory)
– REMOVE the fact from the KB !!! Different from logic
– QUERY the user, etc …

kn aaappp ,,, 2121 KK ⇒∧∧

M. HauskrechtCS 1571 Intro to AI

Production systems
• Use forward chaining to do reasoning:

– If the antecedent of the rule is satisfied (rule is said to be
“active”) then its consequent can be executed (it is “fired”)

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Strategy for selecting the rule to be fired from among possible
candidates is called conflict resolution

R27

R105

Conditions R27

Conditions R105

Actions R27

Actions R105
?

M. HauskrechtCS 1571 Intro to AI

Production systems
• Why is conflict resolution important? Or, why do we care

about the order?
• Assume that we have two rules and the preconditions of both

are satisfied:

• What can happen if rules are triggered in different order?

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xAdeletezExBxA ⇒∧∧

R1:

R2:

M. HauskrechtCS 1571 Intro to AI

Production systems
• Why is conflict resolution important? Or, Why do we care

about the order?
• Assume that we have two rules and the preconditions of both

are satisfied:

• What can happen if rules are triggered in different order?
– If R1 goes first, R2 condition is still satisfied and we infer

D(x)
– If R2 goes first we may never infer D(x)

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xAdeletezExBxA ⇒∧∧

R1:

R2:

M. HauskrechtCS 1571 Intro to AI

Production systems

• Problems with production systems:
– Additions and Deletions can change a set of active rules;
– If a rule contains variables testing all instances in which the

rule is active may require a large number of unifications.
– Conditions of many rules may overlap, thus requiring to

repeat the same unifications multiple times.
• Solution: Rete algorithm

– gives more efficient solution for managing a set of active
rules and performing unifications

– Implemented in the system OPS-5 (used to implement
XCON – an expert system for configuration of DEC
computers)

M. HauskrechtCS 1571 Intro to AI

Rete algorithm

• Assume a set of rules:

• And facts:

• Rete:
– Compiles the rules to a network that merges conditions of

multiple rules together (avoid repeats)
– Propagates valid unifications
– Reevaluates only changed conditions

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xEaddxDyBxA ⇒∧∧
)()()()(xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1(CBBBAA

M. HauskrechtCS 1571 Intro to AI

Rete algorithm. Network.

)()()()(xDaddyCxBxA ⇒∧∧

)()()()(xEaddxDyBxA ⇒∧∧
)()()()(xAdeletezExBxA ⇒∧∧

)5(),4(),3(),2(),2(),1(CBBBAA

Rules:

Facts:

M. HauskrechtCS 1571 Intro to AI

Conflict resolution strategies

• Problem: Two or more rules are active at the same time.
Which one to execute next?

• Solutions:
– No duplication (do not execute the same rule twice)
– Recency. Rules referring to facts newly added to the

working memory take precedence
– Specificity. Rules that are more specific are preferred.
– Priority levels. Define priority of rules, actions based on

expert opinion. Have multiple priority levels such that the
higher priority rules fire first.

M. HauskrechtCS 1571 Intro to AI

Semantic network systems

• Knowledge about the world described in terms of graphs.
Nodes correspond to:
– Concepts or objects in the domain.

Links to relations. Three kinds:
– Subset links (isa, part-of links)
– Member links (instance links)
– Function links.

• Can be transformed to the first-order logic language
• Graphical representation is often easier to work with

– better overall view on individual concepts and relations

Inheritance relation links

M. HauskrechtCS 1571 Intro to AI

Semantic network. Example.

Ship

Ocean liner Oil tanker Engine Hull

Swimming
pool

Queen
Mary

Exxon
Valdez

Boiler

isa isa

member memberis-part is-part

is-part is-part

Queen Mary is a ship
Queen Mary has a boiler

Water
Transports on

Inferred properties:

M. HauskrechtCS 1571 Intro to AI

Planning: situation calculus

M. HauskrechtCS 1571 Intro to AI

Representation of actions, situations, events

The world is dynamic:
• What is true now may not be true tomorrow
• Changes in the world may be triggered by our activities

Problems:
• Logic (FOL) as we had it referred to a static world. How to

represent the change in the FOL ?
• How to represent actions we can use to change the world?

M. HauskrechtCS 1571 Intro to AI

Planning
Planning problem:
• find a sequence of actions that achieves some goal
• an instance of a search problem
• the state description is typically very complex and relies on a

logic-based representation

Methods for modeling and solving a planning problem:
• State space search
• Situation calculus based on FOL
• STRIPS – state space search algorithm
• Partial-order planning algorithms

M. HauskrechtCS 1571 Intro to AI

Situation calculus

Provides a framework for representing change, actions and for
reasoning about them

• Situation calculus
– based on the first-order logic,
– a situation variable models new states of the world
– action objects model activities
– uses inference methods developed for FOL to do the

reasoning

M. HauskrechtCS 1571 Intro to AI

Situation calculus

• Logic for reasoning about changes in the state of the world
• The world is described by:

– Sequences of situations of the current state
– Changes from one situation to another are caused by

actions
• The situation calculus allows us to:

– Describe the initial state and a goal state
– Build the KB that describes the effect of actions

(operators)
– Prove that the KB and the initial state lead to a goal state

• extracts a plan as side-effect of the proof

M. HauskrechtCS 1571 Intro to AI

Situation calculus

The language is based on the First-order logic plus:
• Special variables: s,a – objects of type situation and action
• Action functions: return actions.

– E.g. Move(A, TABLE, B) represents a move action
– Move(x,y,z) represents an action schema

• Two special function symbols of type situation
– s0 – initial situation
– DO(a,s) – denotes the situation obtained after performing an

action a in situation s
• Situation-dependent functions and relations

(also called fluents)
– Relation: On(x,y,s) – object x is on object y in situation s;
– Function: Above(x,s) – object that is above x in situation s.

M. HauskrechtCS 1571 Intro to AI

Situation calculus. Blocks world example.

A B C C
B
A

Initial state Goal

On(A,Table, s0)
On(B,Table, s0)
On(C,Table, s0)
Clear(A, s0)
Clear(B, s0)
Clear(C, s0)
Clear(Table, s0)

On(A,B, s)
On(B,C, s)
On(C,Table, s)

Find a state (situation) s, such that

M. HauskrechtCS 1571 Intro to AI

Blocks world example.

A B C C
B
A

Initial state Goal

On(A,Table, s0)
On(B,Table, s0)
On(C,Table, s0)
Clear(A, s0)
Clear(B, s0)
Clear(C, s0)
Clear(Table, s0)

On(A,B, s)
On(B,C, s)
On(C,Table, s)

Clear(A, s)

Note: It is not necessary that
the goal describes all relations

M. HauskrechtCS 1571 Intro to AI

3 possible goal
configurations

Blocks world example.

A B C
C
B
A

Initial state

On(A,Table, s0)
On(B,Table, s0)
On(C,Table, s0)
Clear(A, s0)
Clear(B, s0)
Clear(C, s0)
Clear(Table, s0)

CB
A

Goal On(A,B, s)

Assume a simpler goal On(A,B, s)

C

B
A

M. HauskrechtCS 1571 Intro to AI

Knowledge base: Axioms.
Knowledge base needed to support the reasoning:
• Must represent changes in the world due to actions.

Two types of axioms:
• Effect axioms

– changes in situations that result from actions
• Frame axioms

– things preserved from the previous situation

M. HauskrechtCS 1571 Intro to AI

Blocks world example. Effect axioms.

Effect axioms:

))),,,((,,(),(),(),,(szyxMOVEDOzxOnszClearsxClearsyxOn →∧∧

))),,,((,,(),(),(),,(szyxMOVEDOyxOnszClearsxClearsyxOn ¬→∧∧

Moving x from y to z.

Effect of move changes on On relations

Effect of move changes on Clear relations

))),,,((,(),(),(),,(szyxMOVEDOyClearszClearsxClearsyxOn →∧∧

))),,,((,(
)(),(),(),,(

szyxMOVEDOzClear
TablezszClearsxClearsyxOn

¬→
≠∧∧∧

),,(zyxMOVE

M. HauskrechtCS 1571 Intro to AI

Blocks world example. Frame axioms.

• Frame axioms.
– Represent things that remain unchanged after an action.

))),,,((,,()()(),,(szyxMOVEDOvuOnyvxusvuOn →≠∧≠∧

))),,,((,()(),(szyxMOVEDOuClearzusuClear →≠∧

On relations:

Clear relations:

M. HauskrechtCS 1571 Intro to AI

Planning in situation calculus

Planning problem:
• find a sequence of actions that lead to a goal
Planning in situation calculus is converted to the theorem

proving problem

• Possible inference approaches:
– Inference rule approach
– Conversion to SAT

• Plan (solution) is a byproduct of theorem proving.
• Example: blocks world

),,(),,(),,(sTableCOnsCBOnsBAOns ∧∧∃
Goal state:

M. HauskrechtCS 1571 Intro to AI

Planning in a blocks world.

A B C C
B
A

Initial state Goal

On(A,Table, s0)
On(B,Table, s0)
On(C,Table, s0)
Clear(A, s0)
Clear(B, s0)
Clear(C, s0)
Clear(Table, s0)

On(A,B, s)
On(B,C, s)
On(C,Table, s)

M. HauskrechtCS 1571 Intro to AI

Planning in the blocks world.

A B C

Initial state (s0)

A
B
C

s1

)),,,((01 sCTableBMOVEDOs =
Action:),,(CTableBMOVE

),,(1sCBOn
),,(1sTableAOn

),,(1sTableCOn

),(1sAClear
),(1sBClear
),(1sCClear¬

),(1sTableClear

=0s

),,(0sTableBOn
),,(0sTableAOn

),,(0sTableCOn

),(0sAClear
),(0sBClear
),(0sCClear

),(0sTableClear

),,(1sTableBOn¬

M. HauskrechtCS 1571 Intro to AI

Planning in the blocks world.

A B C C
B
A

Initial state (s0) s2

A
B
C

s1

)),,,((01 sCTableBMOVEDOs =

),(1sAClear
),(1sBClear
),(1sCClear¬

),(1sTableClear

Action:),,(BTableAMOVE

),,(2sCBOn
),,(2sBAOn

),,(2sTableCOn),(2sAClear

),(2sBClear¬
),(2sCClear¬

),(2sTableClear

)),,,((12 sBTableAMOVEDOs =
))),,,((),,,((0sCTableBMOVEDOBTableAMOVEDO=

),,(1sCBOn
),,(1sTableAOn

),,(1sTableCOn
),,(1sTableBOn¬

),,(2sTableBOn¬
),,(2sTableAOn¬

M. HauskrechtCS 1571 Intro to AI

Planning in situation calculus.

Planning problem:
• Find a sequence of actions that lead to a goal
• Is a special type of a search problem
• Planning in situation calculus is converted to theorem proving.

• Problems:
– Large search space
– Large number of axioms to be defined for one action
– Proof may not lead to the best (shortest) plan.

