CS 1571 Introduction to AI Lecture 15

Inference in first-order logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administrations

- Midterm 1 Thursday, October 29, 2009
 - In-class ?
 - Closed book
- Review at the end of the lecture today

CS 1571 Intro to Al

Connections between quantifiers

Everyone likes ice cream

```
\forall x \ likes (x, IceCream)
```

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

```
\neg \exists x \neg likes (x, IceCream)
```

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Someone likes ice cream

```
\exists x \ likes \ (x, IceCream)
```

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

```
\neg \forall x \neg likes (x, IceCream)
```

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

CS 1571 Intro to Al

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John, Mary, Jane, ...

• Properties: gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• Functions: mother-of (one for each person x)

MotherOf(x)

CS 1571 Intro to Al

M. Hauskrecht

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

· Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

· A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

And so on

CS 1571 Intro to Al

Logical inference in FOL

Logical inference problem:

• Given a knowledge base KB (a set of sentences) and a sentence α , does the KB semantically entail α ?

$$KB \models \alpha$$
 ?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is undecidable !!!. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

CS 1571 Intro to Al

M. Hauskrecht

Logical inference problem in the Propositional logic

Computational procedures that answer:

$$KB \models \alpha$$
 ?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to Al

Inference in FOL: Truth table approach

- Is the Truth-table approach a viable approach for the FOL?
 ?
- NO!
- Why?
- It would require us to enumerate and list all possible interpretations I
- I = (assignments of symbols to objects, predicates to relations and functions to relational mappings)
- Simply there are too many interpretations

CS 1571 Intro to Al

M. Hauskrecht

M. Hauskrecht

Inference in FOL: Inference rules

- Is the Inference rule approach a viable approach for the FOL??
- Yes.
- The inference rules represent sound inference patterns one can apply to sentences in the KB
- What is derived follows from the KB
- Caveat: we need to add rules for handling quantifiers

CS 1571 Intro to Al

Inference rules

- Inference rules from the propositional logic:
 - Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

- Resolution

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

- and others: And-introduction, And-elimination, Orintroduction, Negation elimination
- Additional inference rules are needed for sentences with quantifiers and variables
 - Must involve variable substitutions

CS 1571 Intro to Al

M. Hauskrecht

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - Bound if it is in the scope of some quantifier

$$\forall x \ P(x)$$

− Free − if it is not bound.

$$\exists x \ P(y) \land Q(x)$$
 y is free

Examples:

$$\forall x \; \exists y \; Likes \; (x, y)$$

• Bound or free?

CS 1571 Intro to Al

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - **Bound** if it is in the scope of some quantifier

$$\forall x P(x)$$
- Free – if it is not bound.

$$\exists x \ P(y) \land Q(x)$$
 y is free

Examples:

$$\forall x \; \exists y \; Likes \; (x,y)$$

Bound

$$\forall x (Likes (x, y) \land \exists y \ Likes (y, Raymond))$$

• Bound or free?

CS 1571 Intro to Al

M. Hauskrecht

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - **Bound** if it is in the scope of some quantifier

$$\exists x \ P(y) \land Q(x)$$
 y is free

Examples:

$$\forall x \; \exists y \; Likes \; (x, y)$$

Bound

$$\forall x (Likes(x, y) \land \exists y \ Likes(y, Raymond))$$

• Free

CS 1571 Intro to Al

Sentences with variables

First-order logic sentences can include variables.

- Sentence (formula) is:
 - Closed if it has no free variables $\forall y \exists x \ P(y) \Rightarrow Q(x)$
 - Open if it is not closed $\exists x \ P(y) \land Q(x) \qquad y \text{ is free}$
 - Ground if it does not have any variablesLikes (John, Jane)

CS 1571 Intro to Al

M. Hauskrecht

Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)
- Substitution:
 - Is represented by a mapping from variables to terms $\{x_1/t_1, x_2/t_2, ...\}$
 - Application of the substitution to sentences

$$SUBST(\{x \mid Sam, y \mid Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$

 $SUBST(\{x \mid z, y \mid fatherof(John)\}, Likes(x, y)) = ?$

CS 1571 Intro to Al

Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)
- Substitution:
 - Is represented by a mapping from variables to terms $\{x_1/t_1, x_2/t_2, ...\}$
 - Application of the substitution to sentences

$$SUBST(\{x/Sam, y/Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$

 $SUBST(\{x/z, y/fatherof(John)\}, Likes(x, y)) =$

CS 1571 Intro to Al

Likes(z, fatherof(John))

M. Hauskrecht

Inference rules for quantifiers

• Universal elimination

$$\frac{\forall x \ \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

- substitutes a variable with a constant symbol

 $\forall x \ Likes(x, IceCream)$ Likes(Ben, IceCream)

• Existential elimination.

$$\frac{\exists x \, \phi(x)}{\phi(a)}$$

 Substitutes a variable with a constant symbol that does not appear elsewhere in the KB

 $\exists x \ Kill(x, Victim)$ Kill(Murderer, Victim)

CS 1571 Intro to Al

Inference rules for quantifiers

• Universal instantiation (introduction)

$$\frac{\phi}{\forall x \ \phi}$$
 $x - \text{is not free in } \phi$

– Introduces a universal variable which does not affect ϕ or its assumptions

$$Sister(Amy, Jane)$$
 $\forall x Sister(Amy, Jane)$

• Existential instantiation (introduction)

$$\frac{\phi(a)}{\exists x \phi(x)} \qquad a - \text{is a ground term in } \phi$$
$$x - \text{is not free in } \phi$$

 Substitutes a ground term in the sentence with a variable and an existential statement

$$Likes(Ben, IceCream)$$
 $\exists x \ Likes(x, IceCream)$

CS 1571 Intro to Al

M. Hauskrecht

Unification

• **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms

$$\frac{\forall x \ \phi(x)}{\phi(a)}$$
 a - is a constant symbol

- Solution: Try substitutions that may help
 - Use substitutions of "similar" sentences in KB
- Unification takes two similar sentences and computes the substitution that makes them look the same, if it exists

$$UNIFY\ (p,q) = \sigma \ \text{ s.t. } SUBST(\ \sigma,p) = SUBST\ (\sigma,q)$$

CS 1571 Intro to Al

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x \mid Jane\}$$

 $UNIFY(Knows(John, x), Knows(y, Ann)) = ?$

CS 1571 Intro to Al

M. Hauskrecht

Unification. Examples.

Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= ?$

CS 1571 Intro to Al

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= \{x / MotherOf(John), y / John\}$
 $UNIFY(Knows(John, x), Knows(x, Elizabeth)) = ?$

CS 1571 Intro to Al

M. Hauskrecht

Unification. Examples.

Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma,p) = SUBST(\sigma,q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x/Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x/Ann, y/John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= \{x/MotherOf(John), y/John\}$
 $UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail$

CS 1571 Intro to Al

Generalized inference rules.

• Use substitutions that let us make inferences

Example: Modus Ponens

• If there exists a substitution σ such that

SUBST
$$(\sigma, A_i) = SUBST(\sigma, A_i')$$
 for all i=1,2, n

$$\frac{A_1 \wedge A_2 \wedge \dots A_n \Rightarrow B, \quad A_1', A_2', \dots A_n'}{SUBST \ (\sigma, B)}$$

- Substitution that satisfies the generalized inference rule can be build via unification process
- Advantage of the generalized rules: they are focused
 - only substitutions that allow the inferences to proceed

CS 1571 Intro to Al

M. Hauskrecht

Resolution inference rule

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\sigma = UNIFY \ (\phi_{i}, \neg \psi_{j}) \neq fail$$

$$\frac{\phi_{1} \lor \phi_{2} \dots \lor \phi_{k}, \quad \psi_{1} \lor \psi_{2} \lor \dots \psi_{n}}{SUBST(\sigma, \phi_{1} \lor \dots \lor \phi_{i-1} \lor \phi_{i+1} \dots \lor \phi_{k} \lor \psi_{1} \lor \dots \lor \psi_{j-1} \lor \psi_{j+1} \dots \psi_{n})}$$

Example:
$$P(x) \lor Q(x), \neg Q(John) \lor S(y)$$

CS 1571 Intro to Al

Resolution inference rule

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\sigma = UNIFY \ (\phi_i, \neg \psi_j) \neq fail$$

$$\frac{\phi_1 \lor \phi_2 \ldots \lor \phi_k, \quad \psi_1 \lor \psi_2 \lor \ldots \psi_n}{SUBST(\sigma, \phi_1 \lor \ldots \lor \phi_{i-1} \lor \phi_{i+1} \ldots \lor \phi_k \lor \psi_1 \lor \ldots \lor \psi_{j-1} \lor \psi_{j+1} \ldots \psi_n)}$$

Example: $P(x) \lor Q(x), \neg Q(John) \lor S(y)$ $P(John) \lor S(y)$

CS 1571 Intro to Al