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Administrations

* Midterm 1 - Thursday, October 29, 2009
— In-class ?

— Closed book

* Review at the end of the lecture today
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Connections between quantifiers

Everyone likes ice cream

V x likes (x, IceCream )

Is it possible to convey the same meaning using an existential
quantifier ?

There is no one who does not like ice cream

—3 x —likes (x, IceCream )

A universal quantifier in the sentence can be expressed using an
existential quantifier !!!
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Connections between quantifiers

Someone likes ice cream

dx likes (x, IceCream )

Is it possible to convey the same meaning using a universal
quantifier ?

Not everyone does not like ice cream

=V x —likes (x,IceCream )

An existential quantifier in the sentence can be expressed using a
universal quantifier !!!
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Representing knowledge in FOL

Example:
Kinship domain

* Objects: people
John , Mary , Jane , ...
* Properties: gender
Male (x), Female (x)
* Relations: parenthood, brotherhood, marriage
Parent (x,y), Brother (x,y), Spouse (x,y)
* Functions: mother-of (one for each person x)
MotherOf (x)
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Kinship domain in FOL

Relations between predicates and functions: write down what
we know about them; how relate to each other.

* Male and female are disjoint categories
Vx Male (x) < —Female (x)
» Parent and child relations are inverse

Vx,y Parent (x,y) < Child (y,x)
* A grandparent is a parent of parent

Vg,c Grandparent(g,c) <> Ip Parent(g, p) A Parent(p,c)

» A sibling is another child of one’s parents

Vx,y Sibling (x,y) < (x # y) A3dp Parent (p,x) A Parent (p,y)

e Andsoon....
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Logical inference in FOL

Logical inference problem:
* Given a knowledge base KB (a set of sentences) and a
sentence « , does the KB semantically entail o ?

KB|=ma ?

In other words: In all interpretations in which sentences in the
KB are true, is also & true?

Logical inference problem in the first-order logic is
undecidable !!!. No procedure that can decide the entailment
for all possible input sentences in a finite number of steps.
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Logical inference problem in the Propositional
logic

Computational procedures that answer:
KB |=a ?

Three approaches:

* Truth-table approach

* Inference rules

* Conversion to the inverse SAT problem
— Resolution-refutation
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Inference in FOL: Truth table approach

Is the Truth-table approach a viable approach for the FOL?
(?

NO!

Why?

It would require us to enumerate and list all possible

interpretations I

I = (assignments of symbols to objects, predicates to relations
and functions to relational mappings)

Simply there are too many interpretations
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Inference in FOL: Inference rules

Is the Inference rule approach a viable approach for the FOL?
?
Yes.

The inference rules represent sound inference patterns one can
apply to sentences in the KB

What is derived follows from the KB
Caveat: we need to add rules for handling quantifiers
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Inference rules

* Inference rules from the propositional logic:
— Modus ponens
A= B, A4
B

~ Resoluti
SOMOR 4V B, —BVC

Av C

— and others: And-introduction, And-elimination, Or-
introduction, Negation elimination

* Additional inference rules are needed for sentences with
quantifiers and variables

— Must involve variable substitutions
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Sentences with variables

First-order logic sentences can include variables.
* Variable is:
— Bound — if it is in the scope of some quantifier
Vx P(x)
— Free —if it is not bound.

Ix P(y)AQ(x)  yis free

Examples:

Vx 3y Likes (x,y)
* Bound or free?
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Sentences with variables

First-order logic sentences can include variables.
* Variable is:
— Bound — if it is in the scope of some quantifier

Vx P(x
— Free — if it is not bound.

dx P(y) A Q(x) yis free
Examples:

Vx 3y Likes (x,y)
* Bound

Vx (Likes (x,y) A3y Likes (y, Raymond ))
* Bound or free?
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Sentences with variables

First-order logic sentences can include variables.
* Variable is:
— Bound — if it is in the scope of some quantifier

Vx P(x
— Free — if it is not bound.

dx P(¥) A O(x)  yis free
Examples:

Vx 3y Likes (x,y)
* Bound

Vx (Likes (x,y) A3y Likes (v, Raymond ))
* Free
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Sentences with variables

First-order logic sentences can include variables.
* Sentence (formula) is:
— Closed — if it has no free variables

Vydx P(y) = Q(x)

— Open — if it is not closed
dx P(y) A Q(x)  yis free

— Ground — if it does not have any variables

Likes (John,Jane)

CS 1571 Intro to Al M. Hauskrecht

Variable substitutions

» Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)

* Substitution:
— Is represented by a mapping from variables to terms

{x, /t,x,/t,,...}
— Application of the substitution to sentences

SUBST({x/ Sam,y/ Pam}, Likes(x, y)) = Likes(Sam, Pam)
SUBST ({x/ z,y/ fatherof (John)}, Likes(x,y))="?
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Variable substitutions

+ Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)

* Substitution:
— Is represented by a mapping from variables to terms

{x,/t,x,/t,,...}

— Application of the substitution to sentences
SUBST({x/ Sam,y/ Pam}, Likes(x, y)) = Likes(Sam, Pam)

SUBST ({x/ z,y/ fatherof (John)}, Likes(x, y)) =
Likes(z, fatherof (John))
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Inference rules for quantifiers

* Universal elimination
Vx ¢(x)
¢(a)
— substitutes a variable with a constant symbol
Vx Likes(x, IceCream) Likes(Ben, IceCream)

a - 1is a constant symbol

» Existential elimination.
dx @(x)
¢(a)
— Substitutes a variable with a constant symbol that does not
appear elsewhere in the KB

x Kill(x,Victim) Kill(Murderer,Victim)
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Inference rules for quantifiers

Universal instantiation (introduction)

¢
Vx ¢

— Introduces a universal variable which does not affect ¢ or
its assumptions

Sister(Amy, Jane) Vx Sister(Amy, Jane)

Existential instantiation (introduction)

x —is not free in ¢

_¢(a) a —is a ground term in @
dx¢(x) x —is not free in ¢
— Substitutes a ground term in the sentence with a variable
and an existential statement

Likes(Ben, IceCream) dx Likes(x, IceCream)
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Unification

Problem in inference: Universal elimination gives many
opportunities for substituting variables with ground terms

Vx @(x)
¢(a)

Solution: Try substitutions that may help

a - 1is a constant symbol

— Use substitutions of ‘“‘similar” sentences in KB

Unification — takes two similar sentences and computes the
substitution that makes them look the same, if it exists

UNIFY (p,q) =0 s.t. SUBST( o, p)= SUBST (o0,q)
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Unification. Examples.

e Unification:
UNIFY (p,q) =0 s.t.SUBST(o,p)=SUBST (0,q)

* Examples:

UNIFY (Knows (John, x), Knows (John, Jane)) = {x / Jane}

UNIFY(Knows(John,x), Knows(y, Ann)) =7
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Unification. Examples.

e Unification:
UNIFY (p,q) =0 st.SUBST(o,p)=SUBST (0,q)

* Examples:

UNIFY (Knows (John, x), Knows (John, Jane)) = {x / Jane}
UNIFY(Knows(John,x), Knows(y, Ann)) ={x/ Ann,y / John}

UNIFY (Knows (John, x), Knows (y, MotherOf (y)))
=7
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Unification. Examples.

e Unification:
UNIFY (p,q) =0 s.t.SUBST(o,p)=SUBST (0,q)

* Examples:
UNIFY (Knows (John, x), Knows (John, Jane)) = {x / Jane}
UNIFY(Knows(John, x), Knows(y, Ann)) = {x/ Ann, y / John}

UNIFY (Knows (John, x), Knows (y, MotherOf (y)))
= {x/ MotherOf (John),y/ John}

UNIFY (Knows (John, x), Knows (x, Elizabeth)) = ?
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Unification. Examples.

e Unification:
UNIFY (p,q) =0 st.SUBST(o,p)=SUBST (0,q)

* Examples:

UNIFY (Knows (John, x), Knows (John, Jane)) = {x / Jane}
UNIFY(Knows(John,x), Knows(y, Ann)) ={x/ Ann,y / John}

UNIFY (Knows (John,x), Knows (y, MotherOf (y)))
= {x/ MotherOf (John), y/ John}

UNIFY (Knows (John, x), Knows (x, Elizabeth)) = fail
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Generalized inference rules.

e Use substitutions that let us make inferences
Example: Modus Ponens
e If there exists a substitution o such that

SUBST (o, A,) = SUBST (c,4,") foralli=1,2,n

ANA N A =B, A" A4,,. A’
SUBST (o, B)

» Substitution that satisfies the generalized inference rule can be
build via unification process

» Advantage of the generalized rules: they are focused
— only substitutions that allow the inferences to proceed
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Resolution inference rule

* Recall: Resolution inference rule is sound and complete
(refutation-complete) for the propositional logic and CNF

Av B, —=AvC

BvC
* Generalized resolution rule is sound and refutation complete
for the first-order logic and CNF w/o equalities (if unsatisfiable
the resolution will find the contradiction)

o =UNIFY (9., ;) # fail

AVE NG, YV, V..,
SUBST(0,¢ V..V NPy . VO NVY NV N VYY)

Example:  P(x)vO(x), —Q(John)v S(y)
?

CS 1571 Intro to Al M. Hauskrecht




Resolution inference rule

* Recall: Resolution inference rule is sound and complete
(refutation-complete) for the propositional logic and CNF

Av B, —AvC

BvC
* Generalized resolution rule is sound and refutation complete
for the first-order logic and CNF w/o equalities (if unsatisfiable
the resolution will find the contradiction)

o =UNIFY (¢,,—y ;) # fail
AVP - N, YIVY, V.Y,
SUBST(0, V..V NGy . VR NVY NV NV VYY)
Example: P(x)v O(x), —Q(John)v S(y)
P(John)v S(y)
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