CS 1571 Introduction to AI Lecture 13

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Logical inference problem

Logical inference problem:

- · Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB \models \alpha$ In other words: In all interpretations in which sentences in the KB are true, is also α true?

Approaches:

- Truth-table approach
- Inference rules
- Conversion to SAT
 - Resolution refutation

CS 1571 Intro to Al

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (*P*, *R*, *T*, *S*)
 - Values: *True*, *False*
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- A logical inference problem can be solved as a CSP problem. Why?

CS 1571 Intro to Al

M. Hauskrecht

Inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem

CS 1571 Intro to Al

Universal inference rule: Resolution rule

Sometimes inference rules can be combined into a single rule Resolution rule

- sound inference rule that works for CNF
- It is complete for propositional logic (refutation complete)

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

A	В	С	$A \vee B$	$\neg B \lor C$	$A \lor C$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

CS 1571 Intro to Al

M. Hauskrecht

Universal rule: Resolution.

Initial obstacle:

 Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:

We know: $(A \wedge B)$ We want to show: $(A \vee B)$

Resolution rule fails to derive it (incomplete ??)

A trick to make things work:

- proof by contradiction (the same we used when considering the SAT problem)
 - Disproving: KB, $\neg \alpha$
 - Proves the entailment $KB = \alpha$

CS 1571 Intro to Al

Resolution algorithm

Algorithm:

- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from KB, $\neg \alpha$ (in CNF form)
- Stop when:
 - Contradiction (empty clause) is reached:
 - $A, \neg A \rightarrow \emptyset$
 - proves entailment.
 - No more new sentences can be derived
 - disproves it.

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem**: S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

KB:
$$P Q (\neg P \lor R) (\neg Q \lor \neg R \lor S)$$

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

$$\begin{array}{cccc}
P & Q & (\neg P \lor R) & (\neg Q \lor \neg R \lor S) & \neg S \\
\hline
R
\end{array}$$

CS 1571 Intro to Al

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

$$\begin{array}{cccc}
P & Q & (\neg P \lor R) & (\neg Q \lor \neg R \lor S) & \neg S \\
\hline
R & & (\neg R \lor S) & \\
S & & & \\
\end{array}$$

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

CS 1571 Intro to Al

M. Hauskrecht

KB in restricted forms

If the sentences in the KB are restricted to some special forms some of the sound inference rules may become complete

Example:

• Horn form (Horn normal form)

$$(A \vee \neg B) \wedge (\neg A \vee \neg C \vee D)$$

Can be written also as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

- Two inference rules that are sound and complete for KBs in the Horn normal form:
 - Resolution
 - Modus ponens

CS 1571 Intro to Al

KB in Horn form

Horn form: a clause with at most one positive literal

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

- Not all sentences in propositional logic can be converted into the Horn form
- KB in Horn normal form:
 - Two types of propositional statements:

• Rules
$$(\neg B_1 \lor \neg B_2 \lor \dots \neg B_k \lor A)$$

 $(\neg (B_1 \land B_2 \land \dots B_k) \lor A)$
 $(B_1 \land B_2 \land \dots B_k \Rightarrow A)$

• Propositional symbols: **facts** B

CS 1571 Intro to Al

M. Hauskrecht

KB in Horn form

- Application of the modus ponens:
 - Infers new facts from previous facts

$$\frac{B \Rightarrow A, \quad B}{A}$$

$$\underbrace{(B_1 \land B_2 \land \dots B_k \Rightarrow A), B_1, B_2, \dots B_k}_{A}$$

 Modus ponens is sound and complete for the KBs in the Horn normal form

CS 1571 Intro to Al

Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A F2: B F3: D

Theorem: E?

CS 1571 Intro to Al

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3· $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

CS 1571 Intro to Al

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3· $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

Rule R2 is satisfied.

F5: *E*

CS 1571 Intro to Al

M. Hauskrecht

Complexity of inferences for KBs in HNF

Question:

How efficient the inferences in HNF can be?

Angware

Procedures linear in the size of the set of clauses in the Horn formulae exist.

- Size of a clause: the number of literals it contains.
- Size of a set of clauses: the sum of the sizes of its elements.

Example:

$$A, B, (A \land B \Rightarrow C), (C \Rightarrow D), (C \Rightarrow E), (E \land F \Rightarrow G)$$

$$A, B, (\neg A \lor \neg B \lor C), (\neg C \lor D), (\neg C \lor E), (\neg E \lor \neg F \lor G)$$

The size is: 12

CS 1571 Intro to Al

How to do the inference? If the HNF (is in clausal form) we can apply resolution

Complexity of inferences for KBs in HNF

Features:

• Every resolution is a **positive unit resolution**; that is, a resolution in which one clause is a positive unit clause (i.e., a proposition letter).

Features:

• At each resolution, the input clause which is not a unit clause is a logical consequence of the result of the resolution. (Thus, the input clause may be deleted upon completion of the resolution operation.)

Complexity of inferences for KBs in HNF

CS 1571 Intro to Al

M. Hauskrecht

Features:

• At each resolution, the input clause which is not a unit clause is a logical consequence of the result of the resolution. (Thus, the input clause may be deleted upon completion of the resolution operation.)

Features:

• Following this deletion, the size of the KB (the sum of the lengths of the remaining clauses) is one less than it was before the operation.)

Complexity of inferences for KBs in HNF

Features:

• If n is the size of the KB, then at most n positive unit resolutions may be performed on it.

Linear time algorithm:

- The number of resolutions is limited to the size of the formula (n)
- But to assure overall linear time we need to access each proposition in a constant time:
- Data structures indexed by proposition names may be accessed in constant time. (This is possible if the proposition names are number in a range (e.g., 1..n), so that array lookup is the access operation.
- If propositions are accessed by name, then a symbol table is necessary, and the algorithm will run in time $O(n \cdot log(n))$.

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining

- Efficient implementation: linear in the size of the KB
- Example:

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

$$B$$

CS 1571 Intro to Al

Forward chaining

 Runs in time linear in the number of literals in the Horn formulae

```
function PL-FC-ENTAILS? (KB,q) returns true or false local variables: count, a table, indexed by clause, initially the number of premises inferred, a table, indexed by symbol, each entry initially false agenda, a list of symbols, initially the symbols known to be true while agenda is not empty do p \leftarrow POP(agenda) unless inferred[p] do inferred[p] \leftarrow true for each Horn clause c in whose premise p appears do decrement count[c] if count[c] = 0 then do if HEAD[c] = q then return true PUSH(HEAD[c], agenda) return false
```

CS 1571 Intro to Al

M. Hauskrecht

 $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A

CS 1571 Intro to Al

Forward chaining

•

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A \land B \Rightarrow L$$

$$A$$

O P N B

CS 1571 Intro to Al

M. Hauskrecht

Backward chaining example

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to Al

Backward chaining example

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to Al

M. Hauskrecht

Forward vs Backward chaining

- FC is data-driven, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is goal-driven, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be much less than linear in size of KB

CS 1571 Intro to Al

KB agents based on propositional logic

- Propositional logic allows us to build knowledge-based agents capable of answering queries about the world by inferring new facts from the known ones
- Example: an agent for diagnosis of a bacterial disease

Facts: The stain of the organism is gram-positive

The growth conformation of the organism is chains

Rules: (If) The stain of the organism is gram-positive \land

The morphology of the organism is coccus \land

The growth conformation of the organism is chains

(Then) \Rightarrow The identity of the organism is streptococcus

CS 1571 Intro to Al

M. Hauskrecht

First order logic

CS 1571 Intro to Al

Limitations of propositional logic

The world we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:

• Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

Assume we have: John is older than Mary

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \land Mary is older than Paul \Rightarrow John is older than Paul

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary \land Mary is older than Paul \Rightarrow Jane is older than Paul

What is the problem?

CS 1571 Intro to Al

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

Assume we have: John is older than Mary

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow John is older than Paul

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

Problem: KB grows large

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

- \Rightarrow Jane is older than Paul
- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: ??

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

<u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u>

 \Rightarrow **PersA** is older than **PersC**

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation ∧

Mary likes vacation ∧

Ann likes vacation

. . .

Solution: Allow quantification in statements

CS 1571 Intro to Al