Propositional logic

Knowledge-based agent

- **Knowledge base (KB):**
 - A set of sentences that describe facts about the world in some formal (representational) language
 - **Domain specific**

- **Inference engine:**
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - **Domain independent**
Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- **Knowledge base** represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

<table>
<thead>
<tr>
<th>If</th>
<th>Then</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The stain of the organism is gram-positive, and</td>
<td></td>
</tr>
<tr>
<td>2. The morphology of the organism is coccus, and</td>
<td></td>
</tr>
<tr>
<td>3. The growth conformation of the organism is chains</td>
<td></td>
</tr>
<tr>
<td>the identity of the organism is streptococcus</td>
<td></td>
</tr>
</tbody>
</table>

- **Inference engine:**
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form

- Key aspects of knowledge representation languages:
 - **Syntax**: describes how sentences are formed in the language
 - **Semantics**: describes the meaning of sentences, what is it the sentence refers to in the real world
 - **Computational aspect**: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic
Logic

• Logic:
 – defines a formal language for logical reasoning

• A tool that helps us to understand how to construct a valid argument

• Logic Defines:
 – the meaning of statements
 – the rules of logical inference

Logic

A formal language for expressing knowledge and for making logical inferences

Logic is defined by:

• A set of sentences
 – A sentence is constructed from a set of primitives according to syntax rules.

• A set of interpretations
 – An interpretation gives a semantic to primitives. It associates primitives with values.

• The valuation (meaning) function V
 – Assigns a value (typically the truth value) to a given sentence under some interpretation

$V : \text{sentence} \times \text{interpretation} \rightarrow \{\text{True, False} \}$
Propositional logic

• The simplest logic

• Definition:
 – A proposition is a statement that is either true or false.

• Examples:
 – Pitt is located in the Oakland section of Pittsburgh.
 • (T)
 – $5 + 2 = 8$.
 • (F)
 – It is raining today.
 • (either T or F)

Propositional logic

• Examples (cont.):
 – How are you?
 • a question is not a proposition
 – $x + 5 = 3$
 • since x is not specified, neither true nor false
 – 2 is a prime number.
 • (T)
 – She is very talented.
 • since she is not specified, neither true nor false
 – There are other life forms on other planets in the universe.
 • either T or F
Propositional logic. Syntax

• Formally propositional logic \(P \):
 – Is defined by Syntax+interpretation+semantics of \(P \)

Syntax:
• Symbols (alphabet) in \(P \):
 – Constants: *True, False*
 – Propositional symbols
 Examples:
 • \(P \)
 • *Pitt is located in the Oakland section of Pittsburgh.*
 • *It rains outside,* etc.
 – A set of connectives:
 \(\neg, \land, \lor, \Rightarrow, \Leftrightarrow \)

Sentences in the propositional logic:
• Atomic sentences:
 – Constructed from constants and propositional symbols
 – True, False are (atomic) sentences
 – \(P, Q \) or *Light in the room is on, It rains outside* are
 (atomic) sentences
• Composite sentences:
 – Constructed from valid sentences via connectives
 – If \(A, B \) are sentences then
 \[
 \neg A \quad (A \land B) \quad (A \lor B) \quad (A \Rightarrow B) \quad (A \Leftrightarrow B)
 \]
 or
 \[
 (A \lor B) \land (A \lor \neg B)
 \]
 are sentences
Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

1. **Interpretation of propositional symbols and constants**
 - Semantics of atomic sentences

2. **Through the meaning of connectives**
 - Meaning (semantics) of composite sentences

Semantic: propositional symbols

A **propositional symbol**
- a statement about the world that is either true or false

Examples:
- *Pitt is located in the Oakland section of Pittsburgh*
- *It rains outside*
- *Light in the room is on*

- An **interpretation** maps symbols to one of the two values:
 True (T), or *False (F)*, depending on whether the symbol is satisfied in the world

 \[I: \text{Light in the room is on} \rightarrow \text{True}, \quad \text{It rains outside} \rightarrow \text{False} \]

 \[I': \text{Light in the room is on} \rightarrow \text{False}, \quad \text{It rains outside} \rightarrow \text{False} \]
Semantic: propositional symbols

The meaning (value) of the propositional symbol for a specific interpretation is given by its interpretation

\[I: \text{Light in the room is on} \rightarrow \text{True, It rains outside} \rightarrow \text{False} \]

\[V(\text{Light in the room is on}, I) = \text{True} \]

\[V(\text{It rains outside}, I) = \text{False} \]

\[I': \text{Light in the room is on} \rightarrow \text{False, It rains outside} \rightarrow \text{False} \]

\[V(\text{Light in the room is on}, I') = \text{False} \]

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding $True, False$ value

\[
\begin{align*}
V(\text{True}, I) &= \text{True} \\
V(\text{False}, I) &= \text{False}
\end{align*}
\]

For any interpretation I
Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

Translation

Assume the following sentences:
- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:
- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s = we will take a canoe trip
- t = We will be home by sunset
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\lnot p \land q \)
• We will go swimming only if it is sunny.
• If we do not go swimming then we will take a canoe trip.
• If we take a canoe trip, then we will be home by sunset.

Denote:

• \(p \) = It is sunny this afternoon
• \(q \) = it is colder than yesterday
• \(r \) = We will go swimming
• \(s \) = we will take a canoe trip
• \(t \) = We will be home by sunset
Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. \(\neg p \land q \)
• We will go swimming only if it is sunny. \(r \rightarrow p \)
• If we do not go swimming then we will take a canoe trip. \(\neg r \rightarrow s \)
• If we take a canoe trip, then we will be home by sunset. \(s \rightarrow t \)

Denote:

• \(p = \) It is sunny this afternoon
• \(q = \) it is colder than yesterday
• \(r = \) We will go swimming
• \(s = \) we will take a canoe trip
• \(t = \) We will be home by sunset
Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

- **Contradiction** (always *False*)

 \[P \land \neg P \]

- **Tautology** (always *True*)

 \[P \lor \neg P \]

\[\neg(P \lor Q) \iff (\neg P \land \neg Q) \]
\[\neg(P \land Q) \iff (\neg P \lor \neg Q) \]

DeMorgan’s Laws

Model, validity and satisfiability

- A **model (in logic)**: An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.

- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.

- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>((P \lor Q) \land \neg Q)</th>
<th>(((P \lor Q) \land \neg Q) \Rightarrow P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>
Model, validity and satisfiability

- **A model (in logic):** An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

<table>
<thead>
<tr>
<th></th>
<th>Satisfiable sentence</th>
<th>Valid sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>P ∨ Q</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Entailment

- **Entailment** reflects the relation of one fact in the world following from the others

<table>
<thead>
<tr>
<th>World</th>
<th>Facts</th>
<th>Semantics</th>
<th>Representation</th>
<th>Sentences</th>
<th>Entails</th>
<th>Sentence</th>
</tr>
</thead>
</table>

- Entailment
 \[KB \models \alpha \]
- Knowledge base KB entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where KB is true
Sound and complete inference.

Inference is a process by which conclusions are reached.

• We want to implement the inference process on a computer!!

Assume an inference procedure i that

• derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

• **Soundness:** An inference procedure is sound

 If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

• **Completeness:** An inference procedure is complete

 If $KB \models \alpha$ then it is true that $KB \vdash_i \alpha$

Logical inference problem

Logical inference problem:

• Given:

 – a knowledge base KB (a set of sentences) and

 – a sentence α (called a theorem),

• **Does a KB semantically entail α?** $KB \models \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is decidable.