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Search for the optimal configuration

Objective:
* find the optimal configuration

Optimality:
* Defined by some quality measure

Quality measure

 reflects our preference towards each configuration (or
state)
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Example: Traveling salesman problem

Problem:
* A graph with distances

Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF
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Example: N queens

* A CSP problem can be converted to the ‘optimal’
configuration problem

* The quality of a configuration in a CSP
= the number of constraints violated

* Solving: minimize the number of constraint violations

# of violations =3 # of violations =1 # of violations =0

CS 1571 Intro to Al M. Hauskrecht




Iterative optimization methods

» Searching systematically for the best configuration with the

DFS may not be the best solution
» Worst case running time:
— Exponential in the number of variables

* Solutions to large ‘optimal’ configuration problems are often

found using iterative optimization methods

* Methods:
— Hill climbing
— Simulated Annealing
— Genetic algorithms
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Iterative optimization methods

Properties:

— Search the space of “complete” configurations
— Take advantage of local moves

2

* Operators make “local” changes to “complete
configurations

— Keep track of just one state (the current state)
* no memory of past states
1! No search tree is necessary !!!
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Example: N-queens

* “Local” operators for generating the next state:
— Select a variable (a queen)
— Reallocate its position

wﬂf%ﬂf
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Example: Traveling salesman problem

“Local” operator for generating the next state:
» divide the existing tour into two parts,
» reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD| EF \
1 Part 2

ABCDFE
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Example: Traveling salesman problem

“Local” operator:

— generates the next configuration (state)
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Searching the configuration space

Search algorithms
* keep only one configuration (the current configuration)

Problem:
* How to decide about which operator to apply?
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Search algorithms

Two strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

» Later: Extensions to multiple current states:
— Genetic algorithms

* Note: Maximization is inverse of the minimization

min f(X) < max [~ f(X)]
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Hill climbing

» Look around at states in the local neighborhood and choose the
one with the best value

* Assume: we want to maximize the

value

/\ Better

states
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Hill climbing

* Always choose the next best successor state

* Stop when no improvement possible

function HILL-CLIMBING( proablent) returns a solution state
inputs: problem. a problem
static: curreri, anode
next, a node

currenti— MAKE-NODE( INITIAL-STATE [problem )

loop do
next +— a highest-valued successor of current
if VALUE[next] <= VALUE[current] then return current
cNrrent+— pext

end
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Hill climbing

» Look around at states in the local neighborhood and choose the
one with the best value

/\ Better
: \. Wo
\

value

states

* What can go wrong?
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Hill climbing

+ Hill climbing can get trapped in the local optimum

value

No more
local improvement

ey
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states

* What can go wrong?
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Hill climbing

+ Hill climbing can get clueless on plateaus

value
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Hill climbing and n-queens

* The quality of a configuration is given by the number of
constraints violated

* Then: Hill climbing reduces the number of constraints
* Min-conflict strategy (heuristic):
— Choose randomly a variable with conflicts
— Choose its value such that it violates the fewest constraints

WIS W
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Success !! But not always!!! The local optima problem!!!
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Simulated annealing

* Permits “bad” moves to states with lower value, thus escape
the local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

value

Always up

Sometimes

w— "
G N

states
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Simulated annealing algorithm

The probability of making a move:
* The probability of moving into a state with a higher value is 1

+ The probability of moving into a state with a lower value is

p(Accept NEXT ) =e**'"  where AE = E iy = Ecuprenr

— The probability is:
* Proportional to the energy difference
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Simulated annealing algorithm

Current configuration ‘

Energy E =145

Energy E =167 Energy E =180

Energy E =191
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Simulated annealing algorithm

AE = Eypyr _ECURRENT
=145-167=-22

AE/T -22/T
=e

A t)=
Current configuration pldecept) = e

Energy E =145 .
nerey Sometimes accept

Energy E =167 Energy E =180

Energy E =191
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Simulated annealing algorithm

Current configuration
Energy E =145

AE=E - E CURRENT
=180-167>0

p(Accept ) =1

Energy E =167 Energy E =180

Always accept!

Energy E =191
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Simulated annealing algorithm
The probability of moving into a state with a lower value is

p(Accept ) = e™*'" where  AE = Eypy — Ecuppeny

The probability is:
— Modulated through a temperature parameter T:
e for 7' — oo the probability of any move approaches 1

« for T — 0 the probability that a state with smaller
value is selected goes down and approaches 0

* Cooling schedule:
— Schedule of changes of a parameter T over iteration steps
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Simulated annealing

function SIMULATED-ANNEALING] problem, sehedule ) returns a solution state
inputs: prablem. a problem
schedule. a mapping from time to “temperature”
static: current, anode
next, a node
T, a“temperature” controlling the probability of downward steps

current+— MAKE-NODE( INITIAL-STATE | problen |}
for f+— | to == do

T+ schedule (1]

if 7=0 then return current

next +— arandomly selected successor of current

AF +— VALUE[rext] — VALUE[current]

if AE =0 then current+— pext

else current4+— next only with probability #*7
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Simulated annealing algorithm

* Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

* Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

« Applications:
— VLSI design

— airline scheduling
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Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration at the time;
— Changes to configurations are typically local

Can we do better?

* Assume we have two configurations with good values that are
quite different

» We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a
population of individual combinations
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Genetic algorithms

Algorithm idea:
* Create a population of random configurations
* Create a new population through:

— Biased selection of pairs of configurations from the
previous population

— Crossover (combination) of pairs
— Mutation of resulting individuals
* Evolve the population over multiple generation cycles

* Selection of configurations to be combined:
— Fitness function = value function

measures the quality of an individual (a state) in the
population
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Reproduction process in GA

» Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1

000110010111

,m%mnnn } | 111010010111 |—w={ 111010010111 |
~ 000110010111 }/>_<‘ 000110101100 |—=| 000110101100 |
6 24% *r| 111010101100 }\>_<‘ 111010101001 =/ 111fH0101001 |
5 20% | 001110101001 ] | 001110101100 || 00111010110f] |

(a) (b) (c) idy (e)
Initial Population  Fitness Function Selection Cross—Over Mutation
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