CS 1571 Introduction to AI Lecture 9

Finding optimal configurations

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Search for the optimal configuration

Objective:

• find the optimal configuration

Optimality:

• Defined by some quality measure

Quality measure

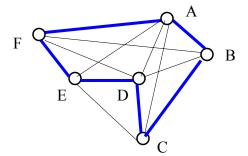
reflects our preference towards each configuration (or state)

CS 1571 Intro to Al

Example: Traveling salesman problem

Problem:

• A graph with distances



• **Goal:** find the shortest tour which visits every city once and returns to the start

An example of a valid **tour:** ABCDEF

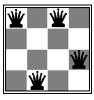
CS 1571 Intro to Al

M. Hauskrecht

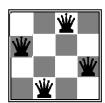
Example: N queens

- A CSP problem can be converted to the 'optimal' configuration problem
- The quality of a configuration in a CSP
 - = the number of constraints violated
- Solving: minimize the number of constraint violations

of violations =3



of violations =1



of violations =0

CS 1571 Intro to Al

Iterative optimization methods

- Searching systematically for the best configuration with the DFS may not be the best solution
- Worst case running time:
 - Exponential in the number of variables
- Solutions to **large 'optimal' configuration** problems are often found using iterative optimization methods
- Methods:
 - Hill climbing
 - Simulated Annealing
 - Genetic algorithms

CS 1571 Intro to Al

M. Hauskrecht

Iterative optimization methods

Properties:

- Search the space of "complete" configurations
- Take advantage of local moves
 - Operators make "local" changes to "complete" configurations
- Keep track of just one state (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!

CS 1571 Intro to Al

Example: N-queens

- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

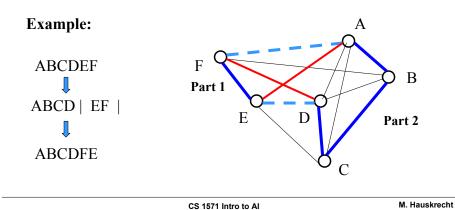
CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

"Local" operator for generating the next state:

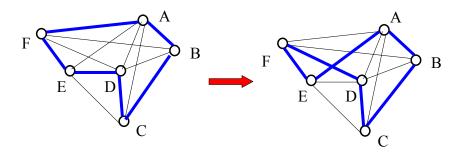
- divide the existing tour into two parts,
- reconnect the two parts in the opposite order



Example: Traveling salesman problem

"Local" operator:

generates the next configuration (state)



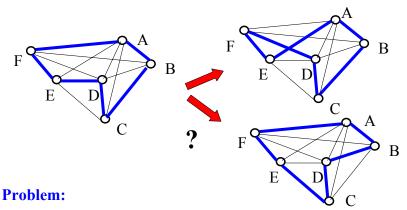
CS 1571 Intro to AI

M. Hauskrecht

Searching the configuration space

Search algorithms

• keep only one configuration (the current configuration)



• How to decide about which operator to apply?

CS 1571 Intro to Al

Search algorithms

Two strategies to choose the configuration (state) to be visited next:

- Hill climbing
- Simulated annealing
- Later: Extensions to multiple current states:
 - Genetic algorithms
- Note: Maximization is inverse of the minimization

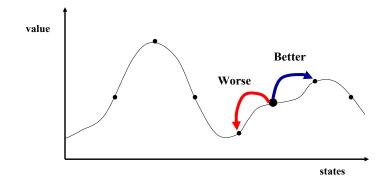
$$\min f(X) \Leftrightarrow \max \left[-f(X) \right]$$

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the



CS 1571 Intro to Al

Hill climbing

- Always choose the next best successor state
- Stop when no improvement possible

```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

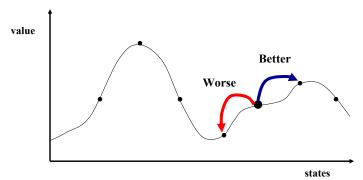
current← MAKE-NODE(INITIAL-STATE[problem])
loop do
next← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current← next
end
```

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

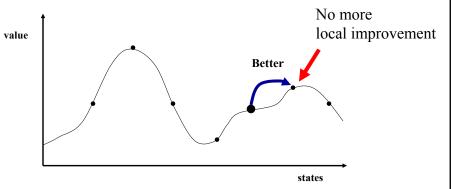
• Look around at states in the local neighborhood and choose the one with the best value



• What can go wrong?

CS 1571 Intro to Al

• Hill climbing can get trapped in the local optimum



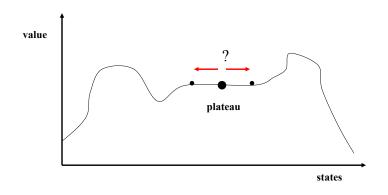
What can go wrong?

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

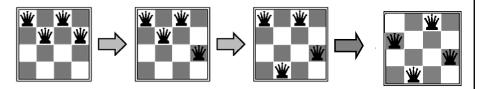
• Hill climbing can get clueless on plateaus



CS 1571 Intro to Al

Hill climbing and n-queens

- The quality of a configuration is given by the number of constraints violated
- Then: Hill climbing reduces the number of constraints
- Min-conflict strategy (heuristic):
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints



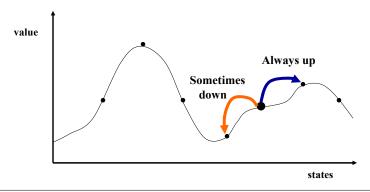
Success !! But not always!!! The local optima problem!!!

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

- Permits "bad" moves to states with lower value, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)



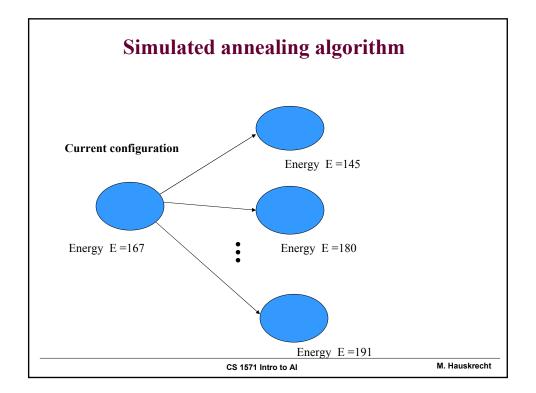
CS 1571 Intro to Al

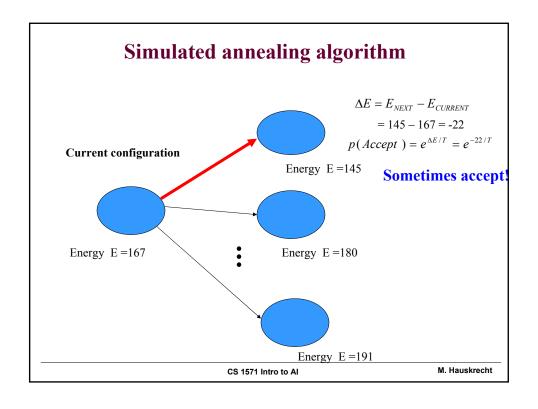
Simulated annealing algorithm

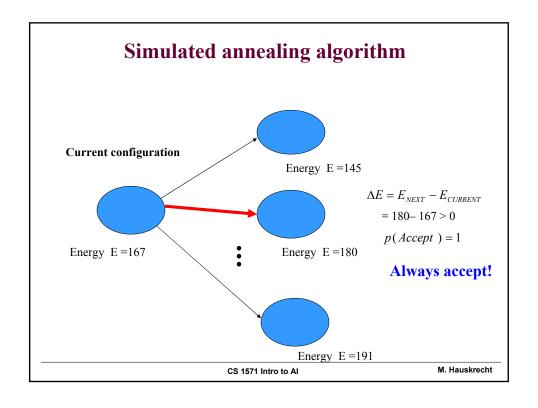
The probability of making a move:

- The probability of moving into a state with a higher value is 1
- The probability of moving into a state with a lower value is $p(Accept\ NEXT) = e^{\Delta E/T} \quad \text{where} \qquad \Delta E = E_{NEXT} E_{CURRENT}$
 - The probability is:
 - Proportional to the energy difference

CS 1571 Intro to Al







Simulated annealing algorithm

The probability of moving into a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
```

schedule, a mapping from time to "temperature"

static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps

current ← MAKE-NODE(INITIAL-STATE[problem])

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T=0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow Value[next] - Value[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

Simulated annealing algorithm

- Simulated annealing algorithm
 - developed originally for modeling physical processes (Metropolis et al, 53)
- Properties:
 - If T is decreased slowly enough the best configuration (state) is always reached
- Applications:
 - VLSI design
 - airline scheduling

CS 1571 Intro to Al

M. Hauskrecht

Simulated evolution and genetic algorithms

- Limitations of simulated annealing:
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!!)

This is the idea behind **genetic algorithms** in which we grow a population of individual combinations

CS 1571 Intro to Al

Genetic algorithms

Algorithm idea:

- Create a population of random configurations
- Create a new population through:
 - Biased selection of pairs of configurations from the previous population
 - Crossover (combination) of pairs
 - Mutation of resulting individuals
- Evolve the population over multiple generation cycles
- Selection of configurations to be combined:
 - Fitness function = value function
 measures the quality of an individual (a state) in the
 population

CS 1571 Intro to Al

M. Hauskrecht

Reproduction process in GA

 Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1

