CS 1571 Introduction to AI Lecture 3

Problem solving by searching

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Example

• Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem?

CS 1571 Intro to Al

Example

• Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem? Hardly, we just apply the standard formula:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

CS 1571 Intro to Al

M. Hauskrecht

Solving problems by searching

- Some problems have a straightforward solution
 - Just apply a known formula, or follow a standardized procedure

Example: solution of the quadratic equation

- Hardly a sign of intelligence
- More interesting problems require **search**:
 - more than one possible alternative needs to be explored before the problem is solved
 - the number of alternatives to search among can be very large, even infinite.

CS 1571 Intro to Al

Search example: Traveler problem

• Find a route from one city (Arad) to the other (Bucharest)

Example. Traveler problem

- Another flavor of the traveler problem:
 - find the route with the minimum length between S and T

Example. Puzzle 8.

• Find the sequence of the empty tile moves from the initial game position to the designated target position

Initial position

Goal position

CS 1571 Intro to Al

M. Hauskrecht

Example. N-queens problem.

Find a configuration of n queens not attacking each other

A goal configuration

A bad configuration

CS 1571 Intro to Al

A search problem

is defined by:

- A search space:
 - The set of objects among which we search for the solution Example: objects = routes between cities, or N-queen configurations
- A goal condition
 - What are the characteristics of the object we want to find in the search space?
 - Examples:
 - Path between cities A and B
 - Path between A and B with the smallest number of links
 - Path between A and B with the shortest distance
 - Non-attacking n-queen configuration

CS 1571 Intro to Al

M. Hauskrecht

Search

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)
- Important to remember !!!
 - You can choose the **search space** and the **exploration policy**
 - These choices can have a profound effect on the efficiency of the solution

CS 1571 Intro to Al

- Many search problems can be naturally represented as graph search problems
- Typical example: Route finding
 - Map corresponds to the graph, nodes to cities, links to available connections between cities
 - Goal: find a route (path) in the graph from S to T

CS 1571 Intro to Al

M. Hauskrecht

Graph search

- Less obvious conversion: Puzzle 8. Find a sequence of moves from the initial configuration to the goal configuration.
 - nodes corresponds to states of the game,
 - links to valid moves made by the player
- Note: the graph for some problem can become very large,

Graph search problem

- **States** game positions, or locations in the map that are represented by nodes in the graph
- Operators connections between cities, valid moves
- Initial state start position, start city
- Goal state target position (positions), target city (cities)

Graph search

- More complex versions of the graph search problems:
 - Find a minimum length path
 (= a route with the smallest number of connections, the shortest sequence of moves that solves Puzzle 8)

CS 1571 Intro to Al

M. Hauskrecht

- More complex versions of the graph search problems:
 - Find a minimum cost path(= a route with the shortest distance)

CS 1571 Intro to Al

M. Hauskrecht

Graph search

- How to find the path in between S and T?
- A strawman solution:
 - Generate systematically all sequences of 1, 2, 3, ... edges
 - Check if the sequence yields a path between S and T.

CS 1571 Intro to Al

Can we do better?

- We are not interested in sequences that do not start in S and that are not valid paths
- Solution:

- ?

M. Hauskrecht

Graph search

Can we do better?

- We are not interested in sequences that do not start in S and that are not valid paths
- Solution:
 - Look only on valid paths starting from S

• Being smarter about the space we search for the solution pays off in terms of the search process efficiency.

CS 1571 Intro to Al

M. Hauskrecht

N-queens

Some problems can be converted to the graph search problems

- · But some problems are harder and less intuitive
 - Take e.g. N-queens problem.

Goal configuration

- Problem:
 - We look for a configuration, not a sequence of moves
 - No distinguished initial state, no operators (moves)

CS 1571 Intro to Al

N-queens

How to choose the search space for N-queens?

• Ideas? Search space:

- Can we convert it to a graph search problem?
- We need states, operators, initial state and goal condition.

N-queens: solution 1

Search space:

- all configurations of N queens on the board
- Graph search:
 - States: configurations N queens
 - Operators: change a positions of one of the queens
 - Initial state: an arbitrary configuration

CS 1571 Intro to Al

- Search space: configurations of 0,1,2, ... N queens
- Graph search:
 - States configurations of 0,1,2,...N queens
 - Operators: additions of a queen to the board
 - Initial state: 0 queens on the board

CS 1571 Intro to Al

M. Hauskrecht

Graph search

A trick: generate a configuration step by step (one queen per step)

- States (nodes) correspond to configurations of 0,1,2,3,4 queens
- Links (operators) correspond to the addition of a queen

N-queens problems

• This is a different graph search problem when compared to Puzzle 8 or Route planning:

We want to find only the target configuration, not a path

Two types of graph search problems

- Path search
 - Find a path between states S and T
 - Example: traveler problem, Puzzle 8
 - Additional goal criterion: minimum length (cost) path
- Configuration search (constraint satisfaction search)
 - Find a state (configuration) satisfying the goal condition
 - Example: n-queens problem, design of a device with a predefined functionality
 - Additional goal criterion: "soft" preferences for configurations, e.g. minimum cost design

CS 1571 Intro to Al

Search problem

Search problems that can be represented or converted into a graph search problems can be defined in terms of:

- Initial state
 - State (configuration) we start to search from (e.g. start city, initial game position)
- Operators:
 - Transform one state to another (e.g. valid connections between cities, valid moves in Puzzle 8)
- Goal condition:
 - Defines the target state (destination, winning position)
- Search space (the set of objects we search for the solution):
 - is now defined indirectly through:

the initial state + operators

CS 1571 Intro to Al

M. Hauskrecht

Traveler problem.

Traveler problem formulation:

- States: different cities Initial state: city Arad
- Operators: moves to cities in the neighborhood
- Goal condition: city BucharestType of the problem: path search
- Possible solution cost: path length

CS 1571 Intro to Al

Puzzle 8 example

Initial state

Goal state

Search problem formulation:

- States: tile configurations
- Initial state: initial configuration
- Operators: moves of the empty tile
- Goal: reach the winning configuration
- · Type of the problem: path search
- **Possible solution cost:** a number of moves

CS 1571 Intro to Al

M. Hauskrecht

N-queens problem

Initial configuration

Problem formulation:

- States: configurations of 0 to 4 queens on the board
- Initial state: no-queen configuration
- Operators: add a queen to the leftmost unoccupied column
- Goal: a configuration with 4 non-attacking queens
- Type of the problem: configuration search

CS 1571 Intro to Al

N-queens problem

Alternative formulation of N-queens problem

Bad goal configuration

Valid goal configuration

Problem formulation:

- States: different configurations of 4 queens on the board
- Initial state: an arbitrary configuration of 4 queens
- Operators: move one queen to a different unoccupied position
- Goal: a configuration with non-attacking queens
- Type of the problem: configuration search

CS 1571 Intro to Al

M. Hauskrecht

Comparison of two problem formulations

Solution 1:

Operators: switch one of the queens

 $\binom{16}{4}$ - all configurations

Solution 2:

Operators: add a queen to the leftmost unoccupied column

$$1+4+4^2+4^3+4^4<4^5$$
 - configurations altogether

CS 1571 Intro to Al

Even better solution to the N-queens

Solution 2:

Operators: add a queen to the leftmost unoccupied column

< 4⁵ - configurations altogether

Improved solution with a smaller search space

Operators: add a queen to the leftmost unoccupied column such that it does not row-attack already placed queens

$$\leq 1 + 4 + 4 * 3 + 4 * 3 * 2 + 4 * 3 * 2 * 1 = 65$$

- configurations altogether

CS 1571 Intro to Al

M. Hauskrecht

Formulating a search problem

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective
 (what it takes to determine I found the desired goal object)
- Think twice before solving the problem by search:
 - Choose the **search space** and the **exploration policy**

CS 1571 Intro to Al