## CS 1571 Introduction to AI Lecture 20

# **Uncertainty**

#### Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

## KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.

### **Problem description:**

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
  - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.

#### Representation of a patient case:

• Statements that hold (are true) for the patient.

E.g: Fever = True

Cough = False

WBCcount=High

**Diagnostic task:** we want to decide whether the patient suffers from the pneumonia or not given the symptoms

CS 1571 Intro to Al

## Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis



**Problem:** disease/symptoms relations are not deterministic

 They are uncertain (or stochastic) and vary from patient to patient

CS 1571 Intro to Al

M. Hauskrecht

## **Uncertainty**

#### Two types of uncertainty:

- Disease --- Symptoms uncertainty
  - A patient suffering from pneumonia may not have fever all the times, may or may not have a cough, white blood cell test can be in a normal range.
- Symptoms Disease uncertainty
  - High fever is typical for many diseases (e.g. bacterial diseases) and does not point specifically to pneumonia
  - Fever, cough, paleness, high WBC count combined do not always point to pneumonia

CS 1571 Intro to Al

## Uncertainty

#### Why are relations uncertain?

- Observability
  - It is impossible to observe all relevant components of the world
  - Observable components behave stochastically even if the underlying world is deterministic
- Efficiency, capacity limits
  - It is often impossible to enumerate and model all components of the world and their relations
  - abstractions can make the relations stochastic

#### Humans can reason with uncertainty !!!

- Can computer systems do the same?

CS 1571 Intro to Al

M. Hauskrecht

## Modeling the uncertainty.

#### **Key challenges:**

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
  - Humans can reason with uncertainty.



CS 1571 Intro to Al

# Methods for representing uncertainty

#### Extensions of the propositional and first-order logic

- Use, uncertain, imprecise statements (relations)

#### **Example: Propositional logic with certainty factors**

Very popular in 70-80s in knowledge-based systems (MYCIN)

• Facts (propositional statements) are assigned a certainty value reflecting the belief in that the statement is satisfied:

$$CF(Pneumonia = True) = 0.7$$

• Knowledge: typically in terms of modular rules

If 1. The patient has cough, and

2. The patient has a high WBC count, and

3. The patient has fever

Then with certainty 0.7

the patient has pneumonia

CS 1571 Intro to Al

M. Hauskrecht

## **Certainty factors**

#### **Problem 1:**

• Chaining of multiple inference rules (propagation of uncertainty)

#### **Solution:**

• Rules incorporate tests on the certainty values

$$(A \text{ in } [0.5,1]) \land (B \text{ in } [0.7,1]) \rightarrow C \text{ with } CF = 0.8$$

#### **Problem 2:**

• Combinations of rules with the same conclusion

(A in [0.5,1]) 
$$\land$$
 (B in [0.7,1])  $\rightarrow$  C with CF = 0.8  
(E in [0.8,1])  $\land$  (D in [0.9,1])  $\rightarrow$  C with CF = 0.9

• What is the resulting *CF(C)*?

CS 1571 Intro to Al

## **Certainty factors**

• Combination of multiple rules

(A in [0.5,1]) 
$$\land$$
 (B in [0.7,1])  $\rightarrow$  C with CF = 0.8  
(E in [0.8,1])  $\land$  (D in [0.9,1])  $\rightarrow$  C with CF = 0.9

Three possible solutions

$$CF(C) = \max[0.9; 0.8] = 0.9$$
  
 $CF(C) = 0.9*0.8 = 0.72$   
 $CF(C) = 0.9 + 0.8 - 0.9*0.8 = 0.98$ 

#### **Problems:**

- Which solution to choose?
- All three methods break down after a sequence of inference rules

CS 1571 Intro to Al

M. Hauskrecht

## Methods for representing uncertainty

#### **Probability theory**

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

### **Facts (propositional statements)**

• Are represented via **random variables** with two or more values **Example:** *Pneumonia* is a random variable

values: True and False

• Each value can be achieved with some probability:

$$P(Pneumonia = True) = 0.001$$
  
 $P(WBCcount = high) = 0.005$ 

CS 1571 Intro to Al

# **Probability theory**

- Well-defined theory for representing and manipulating statements with uncertainty
- Axioms of probability:

For any two propositions A, B.

- 1.  $0 \le P(A) \le 1$
- 2. P(True) = 1 and P(False) = 0
- 3.  $P(A \lor B) = P(A) + P(B) P(A \land B)$



CS 1571 Intro to Al

M. Hauskrecht

## Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.

- Propositions:
  - statements about the world
  - Represented by the assignment of values to random variables
- Random variables:
- ! Boolean Pneumonia is either True, False

Random variable Values

- ! Multi-valued Pain is one of {Nopain, Mild, Moderate, Severe} Random variable Values
  - Continuous

    HeartRate is a value in <0;250>
    Random variable Values

CS 1571 Intro to Al

### **Probabilities**

#### **Unconditional probabilities (prior probabilities)**

P(Pneumonia) = 0.001 or P(Pneumonia = True) = 0.001

P(Pneumonia = False) = 0.999

P(WBCcount = high) = 0.005

### **Probability distribution**

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive

P(Pneumonia = True) = 0.001P(Pneumonia = False) = 0.999

| Pneumonia | P(Pneumonia) |
|-----------|--------------|
| True      | 0.001        |
| False     | 0.999        |

CS 1571 Intro to Al

M. Hauskrecht

## **Probability distribution**

Defines probability for all possible value assignments

### Example 1:

$$P(Pneumonia = True) = 0.001$$
  
 $P(Pneumonia = False) = 0.999$ 

| Pneumonia | P(Pneumonia) |
|-----------|--------------|
| True      | 0.001        |
| False     | 0.999        |

$$P(Pneumonia = True) + P(Pneumonia = False) = 1$$
  
**Probabilities sum to 1 !!!**

### Example 2:

$$P(WBCcount = high) = 0.005$$
  
 $P(WBCcount = normal) = 0.993$   
 $P(WBCcount = high) = 0.002$ 

| WBCcount | P(WBCcount) |
|----------|-------------|
| high     | 0.005       |
| normal   | 0.993       |
| low      | 0.002       |

CS 1571 Intro to Al

## Joint probability distribution

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments of values to variables in the set

Example: variables Pneumonia and WBCcount

**P**(pneumonia, WBCcount)

Is represented by  $2 \times 3$  matrix

#### **WBCcount**

Pneumonia

|       | high   | normal | low    |
|-------|--------|--------|--------|
| True  | 0.0008 | 0.0001 | 0.0001 |
| False | 0.0042 | 0.9929 | 0.0019 |

CS 1571 Intro to Al

M. Hauskrecht

## Joint probabilities

### Marginalization

- reduces the dimension of the joint distribution
- Sums variables out

**P**(*pneumonia*, *WBCcount*)  $2 \times 3$  matrix

**WBCcount** 

**P**(*Pneumonia*)

Pneumonia

|       | high   | normal | low    | $\neg$ |
|-------|--------|--------|--------|--------|
| True  | 0.0008 | 0.0001 | 0.0001 | 0.001  |
| False | 0.0042 | 0.9929 | 0.0019 | 0.999  |
|       | 0.005  | 0.993  | 0.002  |        |

P(WBCcount)

Marginalization (here summing of columns or rows)

CS 1571 Intro to Al

# **Marginalization**

#### **Marginalization**

reduces the dimension of the joint distribution

$$P(X_1, X_2, \dots X_{n-1}) = \sum_{\{X_n\}} P(X_1, X_2, \dots X_{n-1}, X_n)$$

• We can continue doing this

$$P(X_2,...X_{n-1}) = \sum_{\{X_1,X_n\}} P(X_1,X_2,...X_{n-1},X_n)$$

What is the maximal joint probability distribution?

• Full joint probability

CS 1571 Intro to Al

M. Hauskrecht

## **Full joint distribution**

- the joint distribution for all variables in the problem
  - It defines the complete probability model for the problem

Example: pneumonia diagnosis

**Variables:** *Pneumonia, Fever, Paleness, WBCcount, Cough*Full joint defines the probability for all possible assignments of values to *Pneumonia, Fever, Paleness, WBCcount, Cough* 

$$P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=T)$$
  
 $P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=F)$   
 $P(Pneumonia=T,WBCcount=High,Fever=T,Cough=F,Paleness=T)$ 

... etc

CS 1571 Intro to Al

# **Full joint distribution**

• Any joint probability for a subset of variables can be obtained via marginalization

```
\begin{split} &P(Pneumonia, WBCcount, Fever) = \\ &\sum_{c,p = \{T,F\}} P(Pneumonia, WBCcount, Fever, Cough = c, Paleness = p) \end{split}
```

• Is it possible to recover full joint from the joint probabilities over a subset of variables?

CS 1571 Intro to Al