CS 1571 Introduction to AI Lecture 2

History and applications of AI

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

The beginnings of AI (40s-50s).

Two streams:

- (1) Neural network approach (McCulloch and Pitts 1943).
 - Boolean model of a human brain.
- (2) Programs capable of simple reasoning tasks:
 - chess programs (Shannon 1950, Newell, Shaw & Simon 1958)
 - checkers (Samuel 1959)
 - Theorem prover in geometry (Gelernter 1959)
 - Logic Theorist (Newell, Shaw & Simon 1957). Used propositional logic to prove theorems.
- Dartmouth meeting (1956), the name Artificial Intelligence adopted (due to John McCarthy)

CS 1571 Intro to Al

60s.

Developments in the two streams:

(1) Neural network models for learning and recognition

- Build on McCulloch and Pitts' work (1943)
- Objective: replicate self-organization and subsequently phenomenon intelligence
- Adaline networks (Widrow, Hoff 1960)
- **Perceptrons** (Rosenblatt 1961)
- Minsky and Papert (1969) strong critique of perceptrons, it killed the area for a decade

(2) Symbolic problem solvers:

- General problem solver (Newell, Simon) think humanly
- LISP AI-specific programming language
- Micro-worlds focus on problem-solving in restricted worlds (e.g. blocks world)

CS 1571 Intro to Al

M. Hauskrecht

70s. Knowledge-based system era.

- Early AI systems did not scale-up well to large applications
- The need for background knowledge

Edward Feigenbaum: "knowledge is the power"

Power of the system derived from the knowledge it uses

• Expert systems: obtain the knowledge from experts in the field, and replicate their problem-solving

Examples of KB systems:

- **Dendral** system (Buchanan et al.). Molecular structure elicitation from mass spectrometer readings.
- Mycin. Diagnosis of bacterial infections.
- Internist (Pople, Myers, Miller). Medical diagnosis.

80s. AI goes commercial.

AI becomes an industry

Many tools for the design of KB systems were developed

Revival of neural network (connectionist) approach.

- Multi-layer neural networks
 - Modeling and learning of non-linear functions.
 - Back-propagation algorithm (learning)

Failure of AI in 80s

- High expectations in very short time
- Computational complexity: some problems are intrinsically hard
- Modeling uncertainty
- Separation of connectionist logic approaches.

CS 1571 Intro to Al

M. Hauskrecht

90s. Moving ahead

- Modeling uncertainty (a breakthrough in late 80s)
 - Bayesian belief networks, probabilistic graphical models.
 - Speech recognition.
- Machine learning and data mining
 - Analysis of large volumes of data
 - Finding patterns in data
 - Learning to predict, act
- Autonomous agents with intelligence:
 - Software agents
 - Robots

CS 1571 Intro to Al

AI today (where are we?)

AI is more rigorous and depends strongly on: applied math, statistics, probability, control and decision theories

Recent theoretical advances and solutions:

- Methods for dealing with uncertainty
- Planning
- Learning
- Optimizations

Applications:

- Focus on partial intelligence (not all human capabilities)
- Systems with components of intelligence in a specific application area; not general multi-purpose intelligent systems

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Software systems.

- Diagnosis of software, technical components
- Adaptive software systems
 - Examples:
 - Intelligent interfaces

(http://www.research.microsoft.com/research/dtg/))

- **Intelligent helper applications**, intelligent tutoring systems
- Web applications:
 - softbots, shopbots (see e.g. http://www.botspot.com/)

CS 1571 Intro to Al

AI applications: information retrieval.

- · Web search engines
 - Improve the quality of search
 - Rely on methods developed in AI
- · Web agents:
 - softbots, shopbots (see e.g. http://www.botspot.com/)
- Semantic web:
 - From information to knowledge sharing
 - OWL

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Speech recognition.

- Speech recognition systems:
 - Hidden Markov models
- Adaptive speech systems
 - Adapt to the user (training)
 - continuous speech
 - commercially available software(e.g. IBM http://www-3.ibm.com/software/speech/)
- Multi-user speech recognition systems
 - Restricted (no training)
 - Customer support:
 - Airline schedules, baggage tracking;
 - Credit card companies.

CS 1571 Intro to Al

Applications: Space exploration

Autonomous rovers, intelligent probes

Telescope scheduling

Analysis of data

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Medicine.

- Medical diagnosis:
 - Pathfinder. Lymph-node pathology.
 - QMR system. Internal medicine.
- Medical imaging

http://www.ai.mit.edu/projects/medical-vision/

- Image guided surgery (Eric Grimson, MIT)

- Image analysis and enhancement

CS 1571 Intro to Al

AI applications: Bioinformatics.

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

Example of a microarray used in gene sequencing

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Transportation.

Autonomous vehicle control:

- ALVINN (CMU, Pomerleau 1993).
 - · Autonomous vehicle
 - Driving across US
- DARPA challenge (http://www.darpa.mil/grandchallenge/)
 - Drive across Mojave desert
 - 2004 no vehicle finished the course
 - 2005 5 vehicles finished
 - Won by a Stanford team
 - 2007 DARPA Urban Challenge (October/November 2007)

AI applications: Transportation.

- Vision systems:
 - Automatic plate recognition

Pedestrian detection(Daimler-Benz)

- Traffic monitoring
- Route optimizations

CS 1571 Intro to Al

M. Hauskrecht

Classification of images or its parts

CS 1571 Intro to Al

AI applications: Game playing.

- Backgammon
 - TD-backgammon
 - a program that learned to play at the championship level (from scratch).
 - reinforcement learning
- Chess
 - Deep blue (IBM) program beats Kasparov.

• Bridge

• Etc.

CS 1571 Intro to Al

M. Hauskrecht

AI applications.

- Robotic toys
 - Sony's Aibo
 (http://www.us.aibo.com/)

- · Humanoid robot
 - Honda's ASIMO (<u>http://world.honda.com/robot/</u>)

Other application areas

- Text classification, document sorting:
 - Web pages, e-mails
 - Articles in the news
- Video, image classification
- · Music composition, picture drawing
- Entertainment ©

CS 1571 Intro to Al

M. Hauskrecht

Topics

- · Problem solving and search.
 - Formulating a search problem, Search methods,
 Combinatorial and Parametric Optimization.
- · Logic and knowledge representations.
 - Logic, Inference
- Planning.
 - Situation calculus, STRIPS, Partial-order planners,
- Uncertainty.
 - Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.
- Machine Learning.
 - A little

CS 1571 Intro to Al