History and applications of AI

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

The beginnings of AI (40s-50s).

Two streams:
(1) Neural network approach (McCulloch and Pitts 1943).
 – Boolean model of a human brain.
(2) Programs capable of simple reasoning tasks:
 – chess programs (Shannon 1950, Newell, Shaw & Simon 1958)
 – checkers (Samuel 1959)
 – Theorem prover in geometry (Gelernter 1959)
 – Logic Theorist (Newell, Shaw & Simon 1957). Used propositional logic to prove theorems.

• Dartmouth meeting (1956), the name Artificial Intelligence adopted (due to John McCarthy)
60s.

Developments in the two streams:

(1) **Neural network models for learning and recognition**
- Build on McCulloch and Pitts’ work (1943)
- **Objective:** replicate self-organization and subsequently phenomenon intelligence
- **Adaline networks** (Widrow, Hoff 1960)
- **Perceptrons** (Rosenblatt 1961)
- Minsky and Papert (1969) – strong critique of perceptrons, it killed the area for a decade

(2) **Symbolic problem solvers:**
- **General problem solver** (Newell, Simon) – think humanly
- **LISP** – AI-specific programming language
- **Micro-worlds** – focus on problem-solving in restricted worlds (e.g. blocks world)

70s. **Knowledge-based system era.**

- Early AI systems did not scale-up well to large applications
- The need for background knowledge

Edward Feigenbaum: “knowledge is the power”

Power of the system derived from the knowledge it uses
- Expert systems: obtain the knowledge from experts in the field, and replicate their problem-solving

Examples of KB systems:
- **Dendral** system (Buchanan et al.). Molecular structure elicitation from mass spectrometer readings.
- **Mycin.** Diagnosis of bacterial infections.
- **Internist** (Pople, Myers, Miller). Medical diagnosis.
80s. AI goes commercial.

AI becomes an industry
- Many tools for the design of KB systems were developed

Revival of neural network (connectionist) approach.
- Multi-layer neural networks
 - Modeling and learning of non-linear functions.
 - Back-propagation algorithm (learning)

Failure of AI in 80s
- High expectations in very short time
- Computational complexity: some problems are intrinsically hard
- Modeling uncertainty
- Separation of connectionist - logic approaches.

90s. Moving ahead

- **Modeling uncertainty** (a breakthrough in late 80s)
 - Bayesian belief networks, probabilistic graphical models.
 - Speech recognition.

- **Machine learning and data mining**
 - Analysis of large volumes of data
 - Finding patterns in data
 - Learning to predict, act

- **Autonomous agents** with intelligence:
 - Software agents
 - Robots
AI today (where are we?)

AI is more rigorous and depends strongly on: applied math, statistics, probability, control and decision theories

Recent theoretical advances and solutions:
- Methods for dealing with uncertainty
- Planning
- Learning
- Optimizations

Applications:
- Focus on *partial intelligence* (not all human capabilities)
- Systems with components of intelligence in a specific application area; not general multi-purpose intelligent systems

AI applications: Software systems.

- **Diagnosis of software**, technical components

- **Adaptive software systems**
 - **Examples:**
 - **Intelligent interfaces** ([http://www.research.microsoft.com/research/dtg/]())
 - **Intelligent helper applications**, intelligent tutoring systems
 - **Web applications:**
 - softbots, shopbots (see e.g. [http://www.botspot.com/]())
AI applications: information retrieval.

- **Web search engines**
 - Improve the quality of search
 - Rely on methods developed in AI

- **Web agents:**
 - softbots, shopbots (see e.g. http://www.botspot.com/)

- **Semantic web:**
 - From information to knowledge sharing
 - OWL

AI applications: Speech recognition.

- **Speech recognition systems:**
 - Hidden Markov models

- **Adaptive speech systems**
 - Adapt to the user (training)
 - continuous speech
 - commercially available software
 (e.g. IBM http://www-3.ibm.com/software/speech/)

- **Multi-user speech recognition systems**
 - Restricted (no training)
 - Customer support:
 - Airline schedules, baggage tracking;
 - Credit card companies.
Applications: Space exploration

Autonomous rovers, intelligent probes

Telescope scheduling

Analysis of data

AI applications: Medicine.

• Medical diagnosis:
 – Pathfinder. Lymph-node pathology.
 – QMR system. Internal medicine.

• Medical imaging
 http://www.ai.mit.edu/projects/medical-vision/
 – Image guided surgery (Eric Grimson, MIT)
 – Image analysis and enhancement
AI applications: Bioinformatics.

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

Example of a microarray used in gene sequencing

AI applications: Transportation.

Autonomous vehicle control:

- ALVINN (CMU, Pomerleau 1993).
 - Autonomous vehicle
 - Driving across US
- DARPA challenge (http://www.darpa.mil/grandchallenge/)
 - Drive across Mojave desert
 - 2004 – no vehicle finished the course
 - 2005 – 5 vehicles finished
 - Won by a Stanford team
 - 2007 - DARPA Urban Challenge (October/November 2007)
AI applications: Transportation.

• **Vision systems:**
 – Automatic plate recognition
 ![Automatic plate recognition](image1.png)
 – Pedestrian detection
 (Daimler-Benz)
 ![Pedestrian detection](image2.png)
 – Traffic monitoring

• **Route optimizations**

Classification of images or its parts

![Classification of images](image3.png)
AI applications: Game playing.

- **Backgammon**
 - TD-backgammon
 - A program that learned to play at the championship level (from scratch).
 - Reinforcement learning

- **Chess**
 - Deep blue (IBM) program beats Kasparov.

- **Bridge**

- **Etc.**

AI applications.

- **Robotic toys**
 - Sony’s Aibo

- **Humanoid robot**
 - Honda’s ASIMO
Other application areas

- **Text classification, document sorting:**
 - Web pages, e-mails
 - Articles in the news
- **Video, image classification**
- **Music composition, picture drawing**
- **Entertainment 😊**

Topics

- **Problem solving and search.**
 - Formulating a search problem, Search methods, Combinatorial and Parametric Optimization.
- **Logic and knowledge representations.**
 - Logic, Inference
- **Planning.**
 - Situation calculus, STRIPS, Partial-order planners,
- **Uncertainty.**
 - Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.
- **Machine Learning.**
 - A little