### CS 1571 Introduction to AI Lecture 14

# Propositional logic: Horn normal form First-order logic.

#### Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

# Logical inference problem

#### **Logical inference problem:**

- · Given:
  - a knowledge base KB (a set of sentences) and
  - a sentence  $\alpha$  (called a theorem),
- Does a KB semantically entail  $\alpha$ ?  $KB \models \alpha$ In other words: In all interpretations in which sentences in the KB are true, is also  $\alpha$  true?

#### **Approaches:**

- Truth-table approach
- Inference rules
- Conversion to SAT
  - Resolution refutation

CS 1571 Intro to Al

# Truth-table approach

**Problem:**  $KB = \alpha$ ?

• We need to check all possible interpretations for which the KB is true (models of KB) whether  $\alpha$  is true for each of them

#### **Truth tables:**

• enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols) and check

#### **Example:**

|       |       | KB         |                       | α                         |          |
|-------|-------|------------|-----------------------|---------------------------|----------|
| P     | Q     | $P \vee Q$ | $P \Leftrightarrow Q$ | $(P \lor \neg Q) \land Q$ |          |
| True  | True  | True       | True                  | True                      | <b>/</b> |
| True  | False |            | False                 | False                     |          |
| False | True  | True       | False                 | False                     |          |
| False | False | False      | True                  | False                     |          |

CS 1571 Intro to Al

M. Hauskrecht

# Inference rules approach.

**Motivation:** we do not want to blindly generate and check all interpretations !!!

#### **Inference rules:**

- Represent sound inference patterns repeated in inferences
- Application of many inference rules allows us to infer new sound conclusions and hence prove theorems
- An example of an inference rule: Modus ponens

$$A \Rightarrow B$$
,  $A$  premise conclusion

CS 1571 Intro to Al

# Example. Inference rules approach.

**KB:**  $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$  **Theorem:** S

- 1.  $P \wedge Q$
- $P \Rightarrow R$
- 3.  $(Q \wedge R) \Rightarrow S$
- **4.** *P*

From 1 and And-elim

5. R

From 2,4 and Modus ponens

6. Q

From 1 and And-elim

7.  $(Q \wedge R)$ 

From 5,6 and And-introduction

**8.** 3

From 7,3 and Modus ponens

**Proved:** S

CS 1571 Intro to Al

M. Hauskrecht

# Example. Inference rules approach.

**KB**:  $P \wedge Q$   $P \Rightarrow R$   $(Q \wedge R) \Rightarrow S$  **Theorem**: S

- 1.  $P \wedge Q$
- $P \Rightarrow R$
- 3.  $(Q \wedge R) \Rightarrow S$
- **4.** *P*

**Nondeterministic steps** 

4. P

From 1 and And-elim

**5.** *R* 

From 2,4 and Modus ponens

**6.** Q

From 1 and And-elim

7.  $(Q \wedge R)$ 

From 5,6 and And-introduction

**8.** *S* 

From 7,3 and Modus ponens

**Proved:** S

CS 1571 Intro to Al

# Inference problem and satisfiability

#### **Inference problem:**

- we want to show that the sentence  $\alpha$  is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

#### **Connection:**

$$KB \models \alpha$$
 if and only if  $(KB \land \neg \alpha)$  is **unsatisfiable**

#### **Consequences:**

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem (Simulated-annealing, WALKSAT)

CS 1571 Intro to Al

M. Hauskrecht

# Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

#### It is an instance of a constraint satisfaction problem:

- Variables:
  - Propositional symbols (P, R, T, S)
  - Values: *True, False*
- Constraints:
  - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- Why is this important? All techniques developed for CSPs can be applied to solve the logical inference problem!!

CS 1571 Intro to Al

# Resolution algorithm

#### Algorithm:

- 1. Convert KB to the CNF form;
- **2. Apply iteratively the resolution rule** starting from KB,  $\neg \alpha$  (in the CNF form)
- 3. Stop when:
  - Contradiction (empty clause) is reached:
    - $A, \neg A \rightarrow \emptyset$
    - proves the entailment.
  - No more new sentences can be derived
    - Rejects (disproves) the entailment.

CS 1571 Intro to Al

M. Hauskrecht

# **Example. Resolution.**

**KB**:  $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$  **Theorem:** S

CS 1571 Intro to Al

# **Example. Resolution.**

**KB:**  $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$  **Theorem:** S

#### Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

**KB:**  $P \ Q \ (\neg P \lor R) \ (\neg Q \lor \neg R \lor S)$ 

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

CS 1571 Intro to Al

M. Hauskrecht

# **Example. Resolution.**

**KB:**  $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$  **Theorem:** S



**Contradiction**

**Proved:** S

CS 1571 Intro to Al

### **KB** in restricted forms

• If the sentences in the KB are restricted to some special forms other sound inference rules may become complete

#### **Example:**

• Horn form (Horn normal form)

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Can be written also as:  $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$ 

- Modus ponens:
  - is the "universal "(complete) rule for the sentences in the Horn form

$$\frac{A \Rightarrow B, \quad A}{B} \qquad \frac{A_1 \land A_2 \land \dots \land A_k \Rightarrow B, A_1, A_2, \dots A_k}{B}$$

CS 1571 Intro to A

M. Hauskrecht

### KB in Horn form

• Horn form: a clause with at most one positive literal

$$(A \vee \neg B) \wedge (\neg A \vee \neg C \vee D)$$

- Not all sentences in propositional logic can be converted into the Horn form
- KB in Horn normal form:
  - Two types of propositional statements:
    - Implications: called **rules**  $(B \Rightarrow A)$
    - Propositional symbols: **facts** B
- Application of the modus ponens:
  - Infers new facts from previous facts

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to Al

# Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

#### Forward chaining

**Idea:** Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

#### • Backward chaining (goal reduction)

**Idea:** To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

CS 1571 Intro to Al

M. Hauskrecht

# Forward chaining example

#### Forward chaining

**Idea:** Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1:  $A \wedge B \Rightarrow C$ 

R2:  $C \wedge D \Rightarrow E$ 

R3:  $C \wedge F \Rightarrow G$ 

F1: A F2: B F3: D

Theorem: E?

CS 1571 Intro to Al

# Forward chaining example

#### Theorem: E

KB: R1:  $A \wedge B \Rightarrow C$ 

R2:  $C \wedge D \Rightarrow E$ 

R3:  $C \wedge F \Rightarrow G$ 

F1: A

F2: *B* 

F3: *D* 

CS 1571 Intro to Al

M. Hauskrecht

# Forward chaining example

#### Theorem: E

KB: R1:  $A \wedge B \Rightarrow C$ 

R2:  $C \wedge D \Rightarrow E$ 

R3·  $C \wedge F \Rightarrow G$ 

F1: A

F2: *B* 

F3: *D* 

Rule R1 is satisfied.

F4: *C* 

CS 1571 Intro to Al

# Forward chaining example

Theorem: E

KB: R1:  $A \wedge B \Rightarrow C$ 

R2:  $C \wedge D \Rightarrow E$ 

R3:  $C \wedge F \Rightarrow G$ 

F1: A

F2: *B* 

F3: *D* 

Rule R1 is satisfied.

F4: *C* 

Rule R2 is satisfied.

F5: *E* 



CS 1571 Intro to Al

M. Hauskrecht

# **Backward chaining example**



KB: R1:  $A \wedge B \Rightarrow C$ 

R2·  $C \wedge D \Rightarrow E$ 

R3:  $C \wedge F \Rightarrow G$ 

F1: A

F2: *B* 

F3: *D* 

- Backward chaining is more focused:
  - tries to prove the theorem only

CS 1571 Intro to Al

# **Backward chaining example**



- KB: R1:  $A \wedge B \Rightarrow C$ 
  - R2:  $C \wedge D \Rightarrow E$
  - R3:  $C \wedge F \Rightarrow G$
  - F1: A
  - F2: *B*
  - F3: *D*

- Backward chaining is more focused:
  - tries to prove the theorem only

CS 1571 Intro to Al

M. Hauskrecht

# KB agents based on propositional logic

- Propositional logic allows us to build **knowledge-based agents** capable of answering queries about the world by infering new facts from the known ones
- Example: an agent for diagnosis of a bacterial disease

**Facts:** The stain of the organism is gram-positive

The growth conformation of the organism is chains

**Rules:** (If) The stain of the organism is gram-positive  $\land$ 

The morphology of the organism is coccus  $\land$ 

The growth conformation of the organism is chains

**(Then)** ⇒ The identity of the organism is streptococcus

CS 1571 Intro to Al

# First order logic

CS 1571 Intro to Al

M. Hauskrecht

# Limitations of propositional logic

The world we want to represent and reason about consists of a number of objects with variety of properties and relations among them

### **Propositional logic:**

• Represents statements about the world without reflecting this structure and without modeling these entities explicitly

#### **Consequence:**

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
  - Statements about similar objects, relations
  - Statements referring to groups of objects.

CS 1571 Intro to Al

# Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

**Assume we have**: John is older than Mary

Mary is older than Paul

**To derive** *John is older than Paul* we need:

John is older than Mary  $\wedge$  Mary is older than Paul

 $\Rightarrow$  John is older than Paul

**Assume we add another fact**: Jane is older than Mary

**To derive** *Jane is older than Paul* we need:

Jane is older than Mary ∧ Mary is older than Paul

 $\Rightarrow$  Jane is older than Paul

What is the problem?

CS 1571 Intro to Al

M. Hauskrecht

# Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

**Assume we have**: John is older than Mary

Mary is older than Paul

**To derive** *John is older than Paul* we need:

John is older than Mary  $\wedge$  Mary is older than Paul

 $\Rightarrow$  John is older than Paul

Assume we add another fact: Jane is older than Mary

**To derive** *Jane is older than Paul* we need:

Jane is older than Mary  $\wedge$  Mary is older than Paul

 $\Rightarrow$  Jane is older than Paul

**Problem:** KB grows large

CS 1571 Intro to Al

# Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary A Mary is older than Paul

 $\Rightarrow$  John is older than Paul

Jane is older than Mary  $\wedge$  Mary is older than Paul

- $\Rightarrow$  Jane is older than Paul
- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: ??

CS 1571 Intro to Al

M. Hauskrecht

# Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary ∧ Mary is older than Paul

 $\Rightarrow$  John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

- $\Rightarrow$  Jane is older than Paul
- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

<u>**PersA**</u> is older than  $\underline{$ **PersB** $} \land \underline{$ **PersB** $}$  is older than  $\underline{$ **PersC** $}$ 

 $\Rightarrow$  **PersA** is older than **PersC** 

CS 1571 Intro to Al

# Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation ∧
Mary likes vacation ∧
Ann likes vacation ∧

• Solution: Allow quantification in statements

CS 1571 Intro to Al

M. Hauskrecht

# First-order logic (FOL)

- More expressive than **propositional logic**
- Eliminates deficiencies of PL by:
  - Representing objects, their properties, relations and statements about them;
  - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
  - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately

CS 1571 Intro to Al

# Logic

#### **Logic** is defined by:

- · A set of sentences
  - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
  - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- The valuation (meaning) function V
  - Assigns a truth value to a given sentence under some interpretation

```
V: sentence \times interpretation \rightarrow \{True, False\}
```

CS 1571 Intro to Al

M. Hauskrecht

# First-order logic. Syntax.

#### **Term** - syntactic entity for representing objects

#### **Terms in FOL:**

- Constant symbols: represent specific objects
  - E.g. John, France, car89
- **Variables:** represent objects of a certain type (type = domain of discourse)
  - E.g. x,y,z
- Functions applied to one or more terms
  - E.g. father-of (John)father-of(father-of(John))

CS 1571 Intro to Al

# First order logic. Syntax.

#### **Sentences in FOL:**

- Atomic sentences:
  - A predicate symbol applied to 0 or more terms

#### **Examples:**

```
Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));
```

- t1 = t2 equivalence of terms

#### **Example:**

CS 1571 Intro to Al

M. Hauskrecht

# First order logic. Syntax.

#### **Sentences in FOL:**

- Complex sentences:
- Assume  $\phi$ ,  $\psi$  are sentences in FOL. Then:
  - $(\phi \land \psi)$   $(\phi \lor \psi)$   $(\phi \Rightarrow \psi)$   $(\phi \Leftrightarrow \psi) \neg \psi$  and
  - $\forall x \phi \quad \exists y \phi$  are sentences

Symbols  $\exists, \forall$ 

- stand for the existential and the universal quantifier

CS 1571 Intro to Al

# **Semantics. Interpretation.**

An interpretation *I* is defined by a **mapping** to the **domain of discourse D or relations on D** 

• **domain of discourse:** a set of objects in the world we represent and refer to:

#### An interpretation I maps:

- Constant symbols to objects in D I(John) =
- Predicate symbols to relations, properties on D

$$I(brother) = \left\{ \left\langle \stackrel{\frown}{\mathcal{X}} \stackrel{\frown}{\mathcal{X}} \right\rangle; \left\langle \stackrel{\frown}{\mathcal{X}} \stackrel{\frown}{\mathcal{X}} \right\rangle; \dots \right\}$$

Function symbols to functional relations on D

$$I(father-of) = \left\{ \left\langle \stackrel{\sim}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\sim}{\mathcal{T}} ; \left\langle \stackrel{\sim}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\sim}{\mathcal{T}} ; \dots \right\}$$

CS 1571 Intro to A

M. Hauskrecht

### Semantics of sentences.

### **Meaning (evaluation) function:**

V: sentence  $\times$  interpretation  $\rightarrow \{True, False\}$ 

A **predicate** *predicate*(*term-1*, *term-2*, *term-3*, *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, *term-3*, *term-n* are in the relation referred to by *predicate* 

$$I(John) = \frac{?}{?} \qquad I(Paul) = \frac{?}{?}$$

$$I(brother) = \left\{ \left\langle \frac{?}{?}, \frac{?}{?} \right\rangle; \left\langle \frac{?}{?}, \frac{?}{?} \right\rangle; \dots \right\}$$

 $brother(John, Paul) = \left\langle \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow} \right\rangle$  in I(brother)

V(brother(John, Paul), I) = True

CS 1571 Intro to Al

### Semantics of sentences.

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- Boolean expressions: standard

E.g. 
$$V(sentence-1 \lor sentence-2, I) = True$$
  
Iff  $V(sentence-1,I) = True$  or  $V(sentence-2,I) = True$ 

Quantifications

$$V(\forall x \ \phi, I) = \textbf{True}$$
 substitution of  $x$  with  $d$ 

Iff for all  $d \in D$   $V(\phi, I[x/d]) = \textbf{True}$ 
 $V(\exists x \ \phi, I) = \textbf{True}$ 

Iff there is a  $d \in D$ , s.t.  $V(\phi, I[x/d]) = \textbf{True}$ 

CS 1571 Intro to Al