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Propositional logic: Horn normal form
First-order logic.  
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Logical inference problem
Logical inference problem:
• Given:

– a knowledge base KB (a set of sentences) and 
– a sentence        (called a theorem), 

• Does a KB semantically entail ?
In other words:  In all interpretations in which sentences in 

the KB are true, is also        true?

Approaches:
• Truth-table approach
• Inference rules
• Conversion to SAT 

– Resolution refutation 

α=|KB
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α

Truth-table approach
Problem:
• We need to check all possible interpretations for which the KB is 

true (models of KB) whether      is true for each of them
Truth tables:
• enumerate truth values of  sentences for all possible interpretations 

(assignments of True/False to propositional symbols) and check
Example: 

α

P Q QP ∨

True True True
True False
False
False False False

True
TrueTrue

True

False
False
False

α=|KB ?

QP ⇔

True

False
False

True

KB
QQP ∧¬∨ )(

CS 1571 Intro to AI M. Hauskrecht

Inference rules approach.

Motivation: we do not want to blindly generate and check all 
interpretations !!!

Inference rules:
• Represent sound inference patterns repeated in inferences
• Application of many inference rules allows us to infer new 

sound conclusions and hence prove theorems

• An example of an inference rule: Modus ponens

B
ABA ,⇒ premise

conclusion
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. From 1 and And-elim
5. From 2,4 and Modus ponens
6. From 1 and And-elim
7. From 5,6 and And-introduction
8. From 7,3 and Modus ponens

QP ∧
RP ⇒

SRQ ⇒∧ )(

S

P
R
Q

)( RQ ∧

QP ∧ RP ⇒ SRQ ⇒∧ )( S

SProved:
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Example. Inference rules approach.

KB: Theorem:

1. 
2.
3.
4. From 1 and And-elim
5. From 2,4 and Modus ponens
6. From 1 and And-elim
7. From 5,6 and And-introduction
8. From 7,3 and Modus ponens

QP ∧
RP ⇒

SRQ ⇒∧ )(

S

P
R
Q

)( RQ ∧

QP ∧ RP ⇒ SRQ ⇒∧ )( S

SProved:

Nondeterministic steps
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Inference problem and satisfiability

Inference problem:
• we want to show that the sentence       is entailed by KB 
Satisfiability:
• The sentence is satisfiable if there is some assignment 

(interpretation) under which the sentence evaluates to true

Connection:

Consequences:   
• inference problem is NP-complete
• programs for solving the SAT problem can be used to solve 

the inference problem (Simulated-annealing, WALKSAT)

α

α=|KB if and only if 
)( α¬∧KB is unsatisfiable
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Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form 
(CNF) is satisfiable (i.e. can evaluate to true)

It is an instance of a constraint satisfaction problem:
• Variables:

– Propositional symbols (P, R, T, S)
– Values: True, False

• Constraints:
– Every conjunct must evaluate to true, at least one of the 

literals must evaluate to true
• Why is this important?  All techniques developed for CSPs

can be applied to solve the logical inference problem !!

K)()()( TQPSRPRQP ¬∨∨¬∧∨¬∨¬∧¬∨∨
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Resolution algorithm

Algorithm: 
1. Convert KB to the CNF form;
2. Apply iteratively the resolution rule starting from 

(in the CNF form)
3.    Stop when:

– Contradiction (empty clause) is reached:
•
• proves the entailment.

– No more new sentences can be derived 
• Rejects (disproves) the entailment.

α¬,KB

OAA →¬,
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Example. Resolution.
KB: Theorem:])[()()( SRQRPQP ⇒∧∧⇒∧∧ S
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Example. Resolution.
KB: Theorem:

Step 1. convert KB to CNF: 
•
•
•

KB:
Step 2. Negate the theorem to prove it via refutation

Step 3. Run resolution on the set of clauses                    

QP ∧

S

P Q

])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

QP ∧
RP ⇒ )( RP ∨¬

SRQ ⇒∧ )( )( SRQ ∨¬∨¬

)( RP ∨¬ )( SRQ ∨¬∨¬

S¬

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬
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Example. Resolution.
KB: Theorem:

S

])[()()( SRQRPQP ⇒∧∧⇒∧∧ S

{}

P Q )( RP ∨¬ )( SRQ ∨¬∨¬ S¬

R )( SR ∨¬

Contradiction SProved:
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KB in restricted forms
• If the sentences in the KB are restricted to some special forms 

other sound inference rules may become complete
Example:
• Horn form (Horn normal form)

• Modus ponens:
– is the “universal “(complete) rule for the sentences in the 

Horn form

)()( DCABA ∨¬∨¬∧¬∨

))(()( DCAAB ⇒∧∧⇒Can be written also as:

B
ABA ,⇒

B
AAABAAA kk KK ,,, 2121 ⇒∧∧∧
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KB in Horn form
• Horn form: a clause with at most one positive literal

• Not all sentences in propositional logic can be converted 
into the Horn form

• KB in Horn normal form:
– Two types of propositional statements:

• Implications: called rules 
• Propositional symbols: facts

• Application of the modus ponens:
– Infers new facts from previous facts

)()( DCABA ∨¬∨¬∧¬∨

B
ABA ,⇒

)( AB ⇒
B
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Forward and backward chaining

Two inference procedures based on modus ponens for Horn 
KBs:

• Forward chaining
Idea: Whenever the premises of a rule are satisfied, infer 
the conclusion. Continue with rules that became satisfied.

• Backward chaining (goal reduction)
Idea: To prove the fact that appears in the conclusion of a 
rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!
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Forward chaining example

• Forward chaining
Idea: Whenever the premises of a rule are satisfied, infer the 
conclusion. Continue with rules that became satisfied.

GFC ⇒∧

KB: R1:

R2:

R3:

Assume the KB with the following rules and facts:
CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D

ETheorem:           ? 
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Forward chaining example

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

Theorem:

F1:
F2:
F3:

A
B
D

E
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Forward chaining example

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

Theorem:

F4: C

F1:
F2:
F3:

A
B
D

Rule R1 is satisfied.

E
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Forward chaining example

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

Theorem:

F4: C

F1:
F2:
F3:

A
B
D

Rule R1 is satisfied.

Rule R2 is satisfied.
F5: E

E
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Backward chaining example

• Backward chaining is more focused: 
– tries to prove the theorem only

C

R2

E

D

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D

?
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Backward chaining example

• Backward chaining is more focused: 
– tries to prove the theorem only

C

A

R1

B

R2

E

D

KB: R1:

R2:

R3: GFC ⇒∧

CBA ⇒∧

EDC ⇒∧

F1:
F2:
F3:

A
B
D

CS 1571 Intro to AI M. Hauskrecht

KB agents based on propositional logic

• Propositional logic allows us to build knowledge-based
agents capable of answering queries about the world by 
infering new facts from the known ones

• Example: an agent for diagnosis of a bacterial disease

The stain of the organism is gram-positive
The morphology of the organism is coccus
The growth conformation of the organism is chains

The identity of the organism is streptococcus

(If)

(Then)

Facts: The stain of the organism is gram-positive
The growth conformation of the organism is chains

Rules: ∧
∧

⇒
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First order logic
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Limitations of propositional logic

The world we want to represent and reason about consists of a 
number of objects with variety of properties and relations 
among them

Propositional logic:
• Represents statements about the world without reflecting this 

structure and without modeling these entities explicitly
Consequence:
• some knowledge is hard or impossible to encode in the 

propositional logic.
• Two cases that are hard to represent:

– Statements about similar objects, relations
– Statements referring to groups of objects.
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To derive we need: 

Limitations of propositional logic
• Statements about similar objects and relations needs to be 

enumerated
• Example: Seniority of people domain

What is the problem?

John is older than Mary
Mary is older than Paul

John is older than Paul

Assume we have:

∧
⇒

John is older than Mary Mary is older than Paul
John is older than Paul

Assume we add another fact: Jane is older than Mary
To derive we need: Jane is older than Paul

∧
⇒

Jane is older than Mary Mary is older than Paul
Jane is older than Paul
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To derive we need: 

Limitations of propositional logic
• Statements about similar objects and relations needs to be 

enumerated
• Example: Seniority of people domain

Problem: KB grows large

John is older than Mary
Mary is older than Paul

John is older than Paul

Assume we have:

∧
⇒

John is older than Mary Mary is older than Paul
John is older than Paul

Assume we add another fact: Jane is older than Mary
To derive we need: Jane is older than Paul

∧
⇒

Jane is older than Mary Mary is older than Paul
Jane is older than Paul
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• Statements about similar objects and relations needs to be 
enumerated

• Example: Seniority of people domain

• Problem: if we have many people and facts about their seniority 
we need represent many rules like this to allow inferences

• Possible solution: ??

For inferences we need: 

Limitations of propositional logic

∧
⇒

John is older than Mary Mary is older than Paul
John is older than Paul

∧
⇒

Jane is older than Mary Mary is older than Paul
Jane is older than Paul
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• Statements about similar objects and relations needs to be 
enumerated

• Example: Seniority of people domain

• Problem: if we have many people and facts about their seniority 
we need represent many rules like this to allow inferences

• Possible solution: introduce variables

For inferences we need: 

Limitations of propositional logic

∧
⇒

John is older than Mary Mary is older than Paul
John is older than Paul

∧
⇒

Jane is older than Mary Mary is older than Paul
Jane is older than Paul

∧PersA is older than PersB PersB is older than PersC
⇒ PersA is older than PersC
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Limitations of propositional logic

• Statements referring to groups of objects require 
exhaustive enumeration of objects

• Example:

• Solution: Allow quantification in statements

Every student likes vacationAssume we want to express 

Doing this in propositional logic would require to include
statements about every student

John likes vacation
Mary likes vacation
Ann likes vacation

∧
∧
∧

L
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First-order logic (FOL)

• More expressive than propositional logic

• Eliminates  deficiencies of PL by:
– Representing objects, their properties, relations and 

statements about them;
– Introducing variables that refer to an arbitrary objects and 

can be substituted by a specific object
– Introducing quantifiers allowing us to make statements 

over groups objects without the need to represent each of 
them separately  
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Logic
Logic is defined by:
• A set of sentences

– A sentence is constructed from a set of primitives according 
to syntax rules.

• A set of interpretations
– An interpretation gives a semantic to primitives. It associates 

primitives with objects, values in the real world.
• The valuation (meaning) function V

– Assigns a truth value to a given  sentence under some 
interpretation

interpretasentence: ×V },{tion FalseTrue→
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First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:
• Constant symbols: represent specific objects

– E.g. John, France, car89
• Variables: represent objects of a certain type (type = domain of 

discourse)
– E.g. x,y,z

• Functions applied to one or more terms
– E.g. father-of (John)

father-of(father-of(John))
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First order logic. Syntax.

Sentences in FOL:
• Atomic sentences:

– A predicate symbol applied to 0 or more terms
Examples:
Red(car12), 
Sister(Amy, Jane);
Manager(father-of(John));

– t1 = t2  equivalence of terms
Example:
John = father-of(Peter)
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First order logic. Syntax.

Sentences in FOL:
• Complex sentences:
• Assume           are sentences in FOL. Then:

–
and

–
are sentences        

Symbols
- stand for the existential and the universal quantifier

)( ψφ ∧ )( ψφ ∨ ψ¬)( ψφ ⇔)( ψφ ⇒
ψφ ,

φx∀ φy∃

∀∃,
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Semantics. Interpretation. 
An interpretation  I is defined by a mapping to the domain of 

discourse D or relations on D
• domain of discourse: a set of objects in the world we represent 

and refer to; 
An interpretation I maps:
• Constant symbols to objects in D

I(John) = 
• Predicate symbols to relations, properties on D

• Function symbols to functional relations on D 

; ; ….

; ; ….

I(brother) =

I(father-of) =
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Semantics of sentences. 
Meaning (evaluation) function:

A predicate predicate(term-1, term-2, term-3, term-n) is true for 
the interpretation I , iff the objects referred to by term-1, term-
2, term-3, term-n are in the relation referred to by predicate

interpretasentence: ×V },{tion FalseTrue→

V(brother(John, Paul), I) = True

; ; ….I(brother) =

I(John) = I(Paul) =

brother(John, Paul) = in I(brother)
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Semantics of sentences.

• Equality

• Boolean expressions: standard

• Quantifications

V(term-1= term-2, I) = True
Iff I(term-1) =I(term-2)

V(sentence-1  ∨ sentence-2, I) = True
Iff V(sentence-1,I)= True or V(sentence-2,I)= True

E.g.

V(           , I) = True
Iff for all               V( ,I[x/d])= True
φx∀

Dd ∈ φ

V(           , I) = True
Iff there is a                , s.t.   V( ,I[x/d])= True
φx∃

Dd ∈ φ

substitution of x with d


