CS 1571 Introduction to AI Lecture 11b

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Knowledge representation

CS 1571 Intro to Al

Knowledge-based agent

Knowledge base

Inference engine

Knowledge base (KB):

- A set of sentences that describe facts about the world in some formal (representational) language
- Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent

CS 1571 Intro to Al

M. Hauskrecht

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge base represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

If

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

Inference engine:

 manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

CS 1571 Intro to Al

Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic

CS 1571 Intro to Al

M. Hauskrecht

Logic

- Logic:
 - defines a formal language for logical reasoning
- A tool that helps us to understand how to construct a valid argument
- Logic Defines:
 - the meaning of statements
 - the rules of logical inference

CS 1571 Intro to Al

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - 5 + 2 = 8.
 - (F)
 - It is raining today.
 - ?

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - (F)
 - It is raining today.
 - (either T or F)

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - . 9

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - ?

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.

• ?

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside, etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 1571 Intro to Al

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$ are sentences

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

CS 1571 Intro to Al

Semantic: propositional symbols

A propositional symbol

- a statement about the world that is either true or false Examples:
 - Pitt is located in the Oakland section of Pittsburgh
 - It rains outside
 - Light in the room is on
- An interpretation maps symbols to one of the two values:
 True (T), or False (F), depending on whether the symbol is satisfied in the world

I: Light in the room is on -> True, It rains outside -> False

I': Light in the room is on -> False, It rains outside -> False

CS 1571 Intro to Al

M. Hauskrecht

Semantic: propositional symbols

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

I: Light in the room is on -> True, It rains outside -> False

V(Light in the room is on, I) = True

V(It rains outside, I) = False

I': Light in the room is on -> False, It rains outside -> False

V(Light in the room is on, I') = False

CS 1571 Intro to Al

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True*, *False* value

$$V(True, \mathbf{I}) = True$$

$$V(False, \mathbf{I}) = False$$
For any interpretation \mathbf{I}

CS 1571 Intro to Al

M. Hauskrecht

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
True	True	False False		True True	True	True
True False		True		True	False True	False False
False	False	True	False	False	True	True

CS 1571 Intro to Al

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al