## CS 1571 Introduction to AI Lecture 26

# Decision making in the presence of uncertainty

#### Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

## Administration

- Solutions to HW-9 and HW-10
  - will be posted on the course web page
- Office hours:
  - **Milos:** Thursday 2:00-3:30pm
  - **Swapna:** Thursday 5:45 pm 7:15 pm
- Final exam:
  - December 11, 2006
  - 12:00-1:50pm, 5129 Sennott Square

CS 1571 Intro to Al

# Decision-making in the presence of uncertainty

- Computing the probability of some event may not be our ultimate goal
- Instead we are often interested in **making decisions about** our future actions so that we satisfy goals
- Example: medicine
  - Diagnosis is typically only the first step
  - The ultimate goal is to manage the patient in the best possible way. Typically many options available:
    - Surgery, medication, collect the new info (lab test)
    - There is an **uncertainty in the outcomes** of these procedures: patient can be improve, get worse or even die as a result of different management choices.

CS 1571 Intro to Al

M. Hauskrecht

# Decision-making in the presence of uncertainty

#### Main issues:

- How to model the decision process with uncertain outcomes in the computer?
- How to make decisions about actions in the presence of uncertainty?

The field of **decision-making** studies ways of making decisions in the presence of uncertainty.

CS 1571 Intro to Al









## Decision making example.

Assume the simplified problem with the Bank and Home choices only.

The result is guaranteed – the outcome is deterministic



What is the rational choice assuming our goal is to make money?

CS 1571 Intro to Al

M. Hauskrecht

## Decision making. Deterministic outcome.

Assume the simplified problem with the Bank and Home choices only.

These choices are deterministic.



Our goal is to make money. What is the rational choice?

**Answer:** Put money into the bank. The choice is always strictly better in terms of the outcome

But what to do if we have uncertain outcomes?

CS 1571 Intro to Al

## **Decision making. Stochastic outcome**

How to quantify the goodness of the stochastic outcome?
We want to compare it to deterministic and other stochastic outcomes.



?

CS 1571 Intro to Al

M. Hauskrecht

## **Decision making. Stochastic outcome**

How to quantify the goodness of the stochastic outcome?
We want to compare it to deterministic and other stochastic outcomes.



Idea: Use expected value of the outcome

CS 1571 Intro to Al

## **Expected value**

- Let X be a random variable representing the monetary outcome with a discrete set of values  $\Omega_X$ .
- Expected value of X is:

$$E(X) = \sum_{x \in \Omega_X} x P(X = x)$$

**Intuition: Expected value** summarizes all stochastic outcomes into a single quantity.



• What is the expected value of the outcome of Stock 1 option?

CS 1571 Intro to Al

M. Hauskrecht

## **Expected value**

- Let X be a random variable representing the monetary outcome with a discrete set of values  $\Omega_X$ .
- **Expected value** of X is:

$$E(X) = \sum_{x \in \Omega_X} x P(X = x)$$

• **Expected value** summarizes all stochastic outcomes into a single quantity



Expected value for the outcome of the Stock 1 option is:  $0.6 \times 110 + 0.4 \times 90 = 66 + 36 = 102$ 

CS 1571 Intro to Al



















## Sequential (multi-step) problems

## The decision tree can be build to capture multi-step decision problems:

- Choose an action
- Observe the stochastic outcome
- And repeat

## How to make decisions for multi-step problems?

- Start from the leaves of the decision tree (outcome nodes)
- Compute expectations at chance nodes
- Maximize at the decision nodes

Algorithm is sometimes called **expectimax** 

CS 1571 Intro to Al













## 



## Conditioning in the decision tree

- But this may not be the case. In decision trees:
  - Later outcomes can be conditioned on the earlier stochastic outcomes and actions

**Example:** stock movement probabilities. Assume:







## Constructing a decision tree

- The decision tree is rarely given to you directly.
  - Part of the problem is to construct the tree.

#### Example: stocks, bonds, bank for k periods

#### Stock:

- Probability of stocks going up in the first period: 0.3
- Probability of stocks going up in subsequent periods:
  - P(kth step=Up)(k-1)th step=Up)=0.4
  - P(kth step = Up | (k-1)th step = Down) = 0.5
- Return if stock goes up: 15 % if down: 10%
- Fixed fee per investment period: \$5

#### **Bonds:**

- Probability of value up: 0.5, down: 0.5
- Return if bond value is going up: 7%, if down: 3%
- Fee per investment period: \$2

#### Bank:

- Guaranteed return of 3% per period, no fee

CS 1571 Intro to Al

M. Hauskrecht

| Rev | iew |
|-----|-----|
|     |     |

CS 1571 Intro to Al

## KR and logic

- Knowledge representation:
  - Syntax (how sentences are build), Semantics (meaning of sentences), Computational aspect (how sentences are manipulated)
- Logic:
  - A formal language for expressing knowledge and ways of reasoning
  - Three components:
    - A set of sentences
    - A set of interpretations
    - The valuation (meaning) function

CS 1571 Intro to Al

M. Hauskrecht

## **Propositional logic**

- · A language for symbolic reasoning
- Language:
  - Syntax, Semantics
- **Satisfiability** of a sentence: at least one interpretation under which the sentence can evaluate to *True*.
- Validity of a sentence: *True* in all interpretations
- Entailment:  $KB = \alpha$ 
  - $\alpha$  is true in all worlds in which KB is true
- Inference procedure
  - Soundness If  $KB \vdash_i \alpha$  then  $KB \models \alpha$
  - Completeness If  $KB \models \alpha$  then  $KB \models_i \alpha$

CS 1571 Intro to Al

## **Propositional logic**

- Logical inference problem:  $KB = \alpha$ ?
  - Does KB entail the sentence  $\alpha$ ?
- Logical inference problem for the propositional logic is decidable.
  - A procedure (program) that stops in finite time exists
- · Approaches:
  - Truth table approach
  - Inference rule approach
  - Resolution refutation

$$KB \models \alpha$$
 if and only if  $(KB \land \neg \alpha)$  is **unsatisfiable**

Normal forms: DNF, CNF, Horn NF (conversions)

CS 1571 Intro to Al

M. Hauskrecht

## First order logic

- Deficiencies of propositional logic
- **First order logic (FOL):** allows us to represent objects, their properties, relations and statements about them
  - Variables, predicates, functions, quantifiers
  - Syntax and semantics of the sentences in FOL
- Logical inference problem  $KB \models \alpha$ ?
  - Undecidable. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.
- Inference approaches:
  - Inference rules
  - Resolution refutation

## First order logic

- Methods for making inferences work with variables:
  - Variable substitutions
  - Unification process that takes two similar sentences and computes the substitution that makes that makes them look the same, if it exists
- Conversions to CNF with universally quantified variables
  - Used by resolution refutation
    - The procedure is refutation- complete

CS 1571 Intro to Al

M. Hauskrecht

## **Knowledge-based systems with HNF**

- KBs in Horn normal form:
  - Not all sentences in FOL can be translated to HNF
  - Modus ponens is complete for Horn databases
- Inferences with KBs in Horn normal form (HNF)
  - Forward chaining
  - Backward chaining
- · Production systems
  - Conflict resolution

CS 1571 Intro to Al

## **Planning**

- Find a sequence of actions that lead to a goal
  - Much like path search, but for very large domains
  - Need to represent the dynamics of the world
- Two basic approaches planning problem representation:
  - Situation calculus
    - Explicitly represents situations (extends FOL)
    - Solving: theorem proving
  - STRIPS
    - · Add and delete list
    - **Solving:** Search (Goal progression, Goal regression)
- Frame problem

CS 1571 Intro to Al

M. Hauskrecht

## **Planning**

- Divide and conquer approach (Sussman's anomaly)
- State space vs. plan space search
- Partial order (non-linear) planners:
  - Search the space of partially build plans
  - Progressive or regressive mode
- · Hierarchical planners

CS 1571 Intro to Al

## Uncertainty

- Basics of probability:
  - random variable, values, probability distribution
- · Joint probability distribution
  - Over variables in a set, **full joint** over all variables
  - Marginalization (summing out)
- · Conditional probability distribution

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t.  $P(B) \neq 0$ 

- Product rule P(A,B) = P(A|B)P(B)
- · Chain rule
- Bayes rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

CS 1571 Intro to A

M. Hauskrecht

## **Uncertainty**

## Full joint probability distribution

- Over variables in a set, **full joint** over all variables

## Two important things to remember:

- Any probabilistic query can be computed from the full joint distribution
- Full joint distribution can be expressed as a product of conditionals via the chain rule

CS 1571 Intro to Al

## Bayesian belief networks

- Full joint distribution over all random variables defining the domain can be very large
  - Complexity of a model, inferences, acquisition
- Solution: Bayesian belief networks (BBNs)
- Two components of BBNs:
  - Structure (directed acyclic graph)
  - Parameters (conditional prob. distributions)
- **BBN** build upon conditional independence relations:

$$P(A,B \mid C) = P(A \mid C)P(B \mid C)$$

- Joint probability distribution for BBNs:
  - Product of local (variable-parents) conditionals

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1, n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

CS 1571 Intro to Al

M. Hauskrecht

## Bayesian belief networks

- Model of joint distribution:
  - Reduction in the number of parameters
- Inferences:
  - Queries on joint probabilities
  - Queries on conditionals expressed as ratios of joint probabilities
  - Joint probabilities can be expressed in terms of full joints
  - Full joints are product of local conditionals
- Smart way to do inferences:
  - Interleave sums and products (variable elimination)

AI M. Hauskrecht

CS 1571 Intro to Al

# Decision-making in the presence of uncertainty

### • Decision tree:

- Decision nodes (choices are made)
- Chance nodes (reflect stochastic outcome)
- Outcomes (value) nodes (value of the end-situation)

#### • Rational choice:

- Decision-maker tries to optimize the expected value

CS 1571 Intro to Al