CS 1571 Introduction to AI Lecture 24

Bayesian belief networks

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administration

- Homework assignment 10 is out and due next week
- Final exam:
 - December 11, 2006
 - 12:00-1:50pm, 5129 Sennott Square

CS 1571 Intro to Al

Modeling uncertainty with probabilities

- Knowledge based system era (70s early 80's)
 - Extensional non-probabilistic models
 - Solve the space, time and acquisition bottlenecks in probability-based models
 - froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general
- Breakthrough (late 80s, beginning of 90s)
 - Bayesian belief networks
 - Give solutions to the space, acquisition bottlenecks
 - Partial solutions for time complexities
- Bayesian belief network

CS 1571 Intro to Al

M. Hauskrecht

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of conditional and marginal independences among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

• A and B are conditionally independent given C

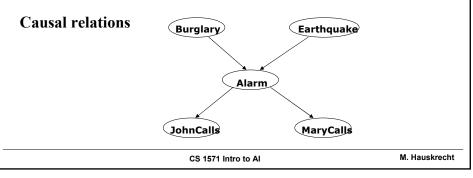
$$P(A, B | C) = P(A | C)P(B | C)$$

 $P(A | C, B) = P(A | C)$

CS 1571 Intro to Al

Alarm system example.

- Assume your house has an **alarm system** against **burglary**. You live in the seismically active area and the alarm system can get occasionally set off by an **earthquake**. You have two neighbors, **Mary** and **John**, who do not know each other. If they hear the alarm they call you, but this is not guaranteed.
- We want to represent the probability distribution of events:
 - Burglary, Earthquake, Alarm, Mary calls and John calls

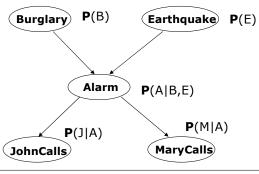


Bayesian belief network.

1. Directed acyclic graph

- Nodes = random variables
 Burglary, Earthquake, Alarm, Mary calls and John calls
- Links = direct (causal) dependencies between variables.

 The chance of Alarm is influenced by Earthquake, The chance of John calling is affected by the Alarm

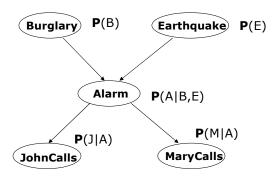


CS 1571 Intro to Al

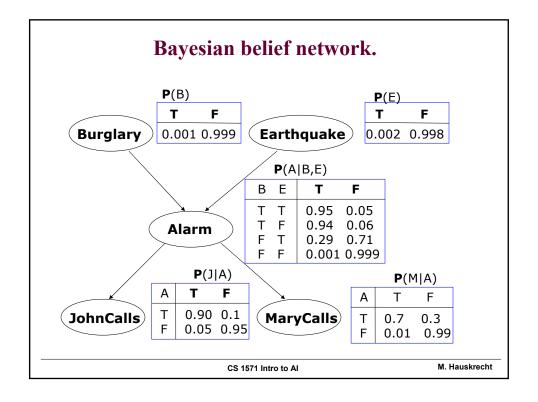
Bayesian belief network.

2. Local conditional distributions

• relate variables and their parents



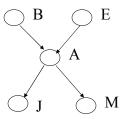
CS 1571 Intro to Al



Bayesian belief networks (general)

Two components: $B = (S, \Theta_s)$

- · Directed acyclic graph
 - Nodes correspond to random variables
 - (Missing) links encode independences



Parameters

 Local conditional probability distributions for every variable-parent configuration

$$\mathbf{P}(X_i \mid pa(X_i))$$

Where:

$$pa(X_i)$$
 - stand for parents of X_i

В	Е	Т	F
Т	Т	0.95	0.05
Τ	F	0.94	0.06
F	Τ	0.29	0.71
_	_	0.001	0.000

P(A|B,E)

CS 1571 Intro to Al

M. Hauskrecht

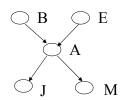
Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:

Assume the following assignment of values to random variables B=T, E=T, A=T, J=T, M=F



Then its probability is:

$$P(B=T,E=T,A=T,J=T,M=F) = P(B=T)P(E=T)P(A=T|B=T,E=T)P(J=T|A=T)P(M=F|A=T)$$

CS 1571 Intro to Al

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent P(A,B) = P(A)P(B)
- A and B are conditionally independent given C

$$P(A \mid C, B) = P(A \mid C)$$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

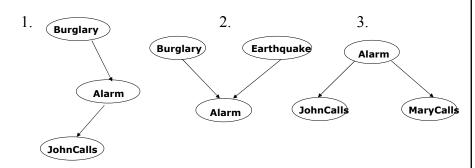
• The graph structure implies the decomposition !!!

CS 1571 Intro to Al

M. Hauskrecht

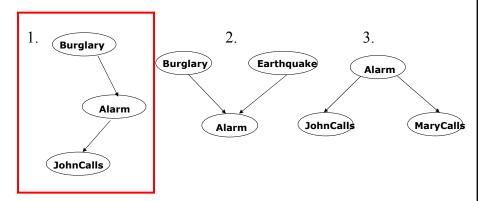
Independences in BBNs

3 basic independence structures:



CS 1571 Intro to Al

Independences in BBNs



1. JohnCalls is independent of Burglary given Alarm

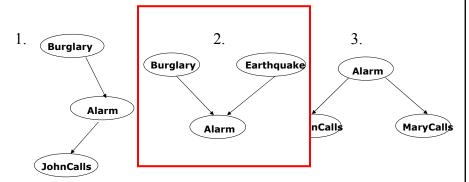
$$P(J \mid A, B) = P(J \mid A)$$

$$P(J, B \mid A) = P(J \mid A)P(B \mid A)$$

CS 1571 Intro to Al

M. Hauskrecht

Independences in BBNs

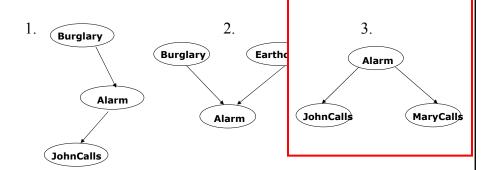


2. Burglary **is independent** of Earthquake (not knowing Alarm) Burglary and Earthquake **become dependent** given Alarm!!

$$P(B, E) = P(B)P(E)$$

CS 1571 Intro to Al

Independences in BBNs



3. MaryCalls is independent of JohnCalls given Alarm

$$P(J \mid A, M) = P(J \mid A)$$

$$P(J, M \mid A) = P(J \mid A)P(M \mid A)$$

CS 1571 Intro to Al

M. Hauskrecht

Independences in BBN

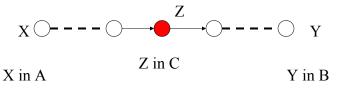
- BBN distribution models many conditional independence relations among distant variables and sets of variables
- These are defined in terms of the graphical criterion called dseparation
- D-separation and independence
 - Let X,Y and Z be three sets of nodes
 - If X and Y are d-separated by Z, then X and Y are conditionally independent given Z
- D-separation:
 - A is d-separated from B given C if every undirected path between them is blocked with C
- · Path blocking
 - 3 cases that expand on three basic independence structures

CS 1571 Intro to Al

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

• 1. Path blocking with a linear substructure



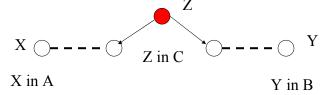
CS 1571 Intro to Al

M. Hauskrecht

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

• 2. Path blocking with the wedge substructure

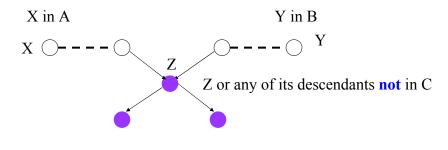


CS 1571 Intro to Al

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

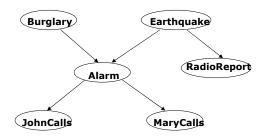
• 3. Path blocking with the vee substructure



CS 1571 Intro to Al

M. Hauskrecht

Independences in BBNs

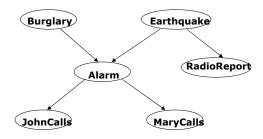


• Earthquake and Burglary are independent given MaryCalls

?

CS 1571 Intro to Al

Independences in BBNs

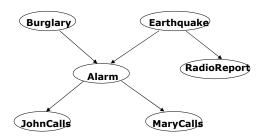


- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) ?

CS 1571 Intro to Al

M. Hauskrecht

Independences in BBNs



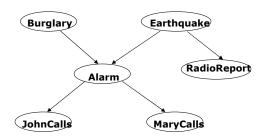
- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake

CS 1571 Intro to Al

M. Hauskrecht

F

Independences in BBNs

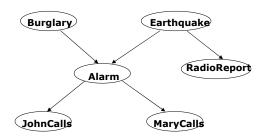


- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls ?

CS 1571 Intro to Al

M. Hauskrecht

Independences in BBNs



- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm)
- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls F

CS 1571 Intro to Al

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- So how did we get to local parameterizations?

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

• The decomposition is implied by the set of independences encoded in the belief network.

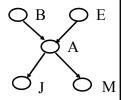
CS 1571 Intro to Al

M. Hauskrecht

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$



CS 1571 Intro to Al

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$=P(J=T | B=T, E=T, A=T, M=F)P(B=T, E=T, A=T, M=F)$$

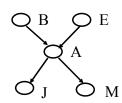
 $=P(J=T | A=T)P(B=T, E=T, A=T, M=F)$

CS 1571 Intro to Al

M. Hauskrecht

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:



$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J = T | B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T | A = T)P(B = T, E = T, A = T, M = F)$$

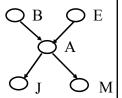
$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F | A = T)P(B = T, E = T, A = T)$$

CS 1571 Intro to Al

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:



$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J=T | B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$$

$$= P(J=T | A=T) P(B=T, E=T, A=T, M=F)$$

$$P(M=F | B=T, E=T, A=T) P(B=T, E=T, A=T)$$

$$P(M=F | A=T) P(B=T, E=T, A=T)$$

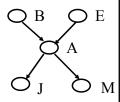
$$P(A=T | B=T, E=T) P(B=T, E=T)$$

CS 1571 Intro to Al

M. Hauskrecht

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:



$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$=P(J=T | B=T, E=T, A=T, M=F)P(B=T, E=T, A=T, M=F)$$

 $=P(J=T | A=T)P(B=T, E=T, A=T, M=F)$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F | A = T)P(B = T, E = T, A = T)$$

$$\underline{P(A=T \mid B=T, E=T)}\underline{P(B=T, E=T)}$$

$$P(B=T)P(E=T)$$

CS 1571 Intro to Al

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J=T | B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$$

$$= P(J=T | A=T) P(B=T, E=T, A=T, M=F)$$

$$P(M=F | B=T, E=T, A=T) P(B=T, E=T, A=T)$$

$$P(M=F | A=T) P(B=T, E=T, A=T)$$

$$P(A=T | B=T, E=T) P(B=T, E=T)$$

$$= P(J=T | A=T) P(M=F | A=T) P(A=T | B=T, E=T) P(B=T) P(E=T)$$

CS 1571 Intro to Al

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,..n} \mathbf{P}(X_i \mid pa(X_i))$$
What did we save?

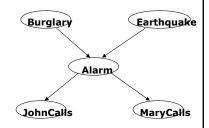
Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$



CS 1571 Intro to Al

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}\left(X_{1},X_{2},..,X_{n}\right)=\prod\;\mathbf{P}\left(X_{i}\mid pa\left(X_{i}\right)\right)$$

• What did we save?

Alarm example: 5 binary (True, False) variables

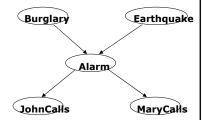
of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

of parameters of the BBN: ?

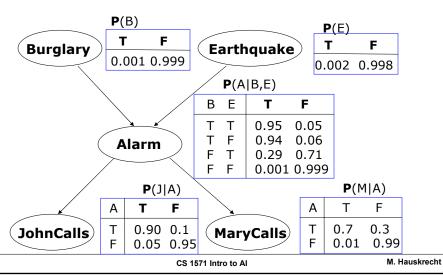


CS 1571 Intro to Al

M. Hauskrecht

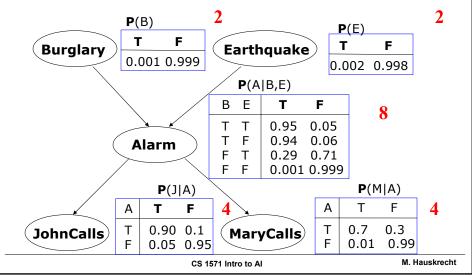
Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions



Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions



Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}\left(X_{1},X_{2},..,X_{n}\right)=\prod\;\mathbf{P}\left(X_{i}\mid pa\left(X_{i}\right)\right)$$

• What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

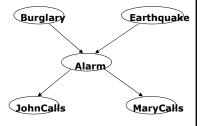
$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$



One parameter in every conditional is for free:

9

CS 1571 Intro to Al

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} \mathbf{P}(X_i \mid pa(X_i))$$

What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

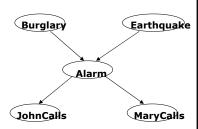
$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$



One parameter in every conditional is for free:

$$2^2 + 2(2) + 2(1) = 10$$

CS 1571 Intro to Al

M. Hauskrecht

Model acquisition problem

The structure of the BBN

- typically reflects causal relations
 (BBNs are also sometime referred to as causal networks)
- Causal structure is intuitive in many applications domain and it is relatively easy to define to the domain expert

Probability parameters of BBN

- are conditional distributions relating random variables and their parents
- · Complexity is much smaller than the full joint
- It is much easier to obtain such probabilities from the expert or learn them automatically from data

CS 1571 Intro to Al

BBNs built in practice

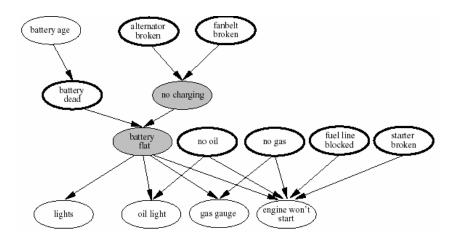
- In various areas:
 - Intelligent user interfaces (Microsoft)
 - Troubleshooting, diagnosis of a technical device
 - Medical diagnosis:
 - Pathfinder (Intellipath)
 - CPSC
 - Munin
 - QMR-DT
 - Collaborative filtering
 - Military applications
 - Business and finance
 - Insurance, credit applications

CS 1571 Intro to Al

M. Hauskrecht

Diagnosis of car engine

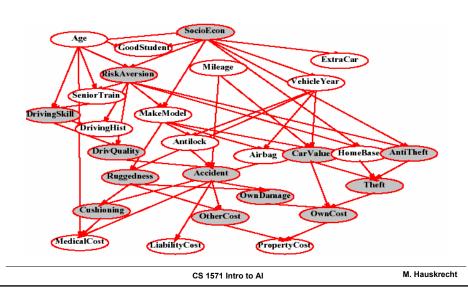
• Diagnose the engine start problem

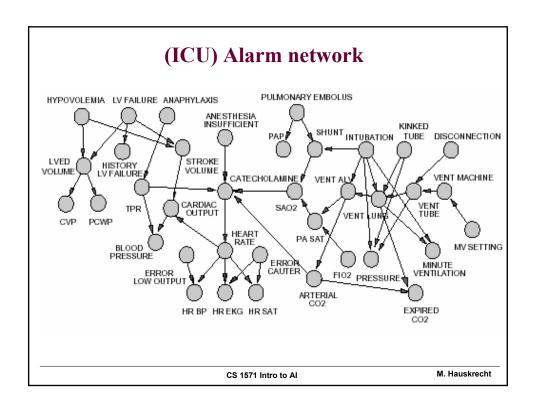


CS 1571 Intro to Al

Car insurance example

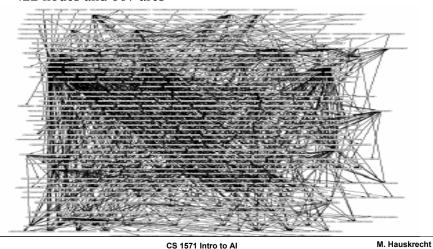
• Predict claim costs (medical, liability) based on application data





CPCS

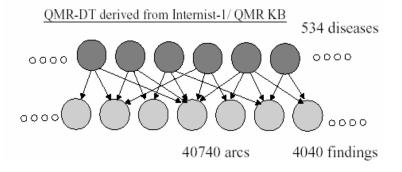
- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (University of Pittsburgh)
- 422 nodes and 867 arcs



QMR-DT

• Medical diagnosis in internal medicine

Bipartite network of disease/findings relations



CS 1571 Intro to Al