CS 1571 Introduction to AI Lecture 23

Modeling uncertainty using probabilities

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administration

- Final exam:
 - December 11, 2006
 - 12:00-1:50pm, 5129 Sennott Square

CS 1571 Intro to Al

Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis

Problem: disease/symptoms relations are not deterministic

 They are uncertain (or stochastic) and vary from patient to patient

CS 1571 Intro to Al

M. Hauskrecht

Modeling the uncertainty.

Key challenges:

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
 - Humans can reason with uncertainty.

CS 1571 Intro to Al

Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- A natural choice to replace certainty factors

Facts (propositional statements)

• Are represented via random variables with two or more values

Example: *Pneumonia* is a random variable

values: True and False

• Each value can be achieved with some probability:

P(Pneumonia = True) = 0.001

P(WBCcount = high) = 0.005

CS 1571 Intro to Al

M. Hauskrecht

Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.

- Propositions:
 - statements about the world
 - Represented by the assignment of values to random variables
- Random variables:
- **Boolean** Pneumonia is either True, False

Random variable Values

- Multi-valued Pain is one of {Nopain, Mild, Moderate, Severe}

 Random variable Values
 - Continuous HeartRate is a value in <0;250 >
 Random variable Values

CS 1571 Intro to Al

Probabilities

Unconditional probabilities (prior probabilities)

P(Pneumonia) = 0.001 or P(Pneumonia = True) = 0.001

P(Pneumonia = False) = 0.999

P(WBCcount = high) = 0.005

Probability distribution

- Defines probabilities for all possible value assignments to a random variable
- Values are mutually exclusive

P(Pneumonia = True) = 0.001P(Pneumonia = False) = 0.999

Pneumonia	P(Pneumonia)
True	0.001
False	0.999

CS 1571 Intro to Al

M. Hauskrecht

Probability distribution

Defines probability for all possible value assignments

Example 1:

$$P(Pneumonia = True) = 0.001$$

 $P(Pneumonia = False) = 0.999$

Pneumonia	P (Pneumonia)
True	0.001
False	0.999

P(Pneumonia = True) + P(Pneumonia = False) = 1**Probabilities sum to 1!!!**

Example 2:

$$P(WBCcount = high) = 0.005$$

 $P(WBCcount = normal) = 0.993$
 $P(WBCcount = high) = 0.002$

WBCcount	P (WBCcount)
high	0.005
normal	0.993
low	0.002

CS 1571 Intro to Al

Joint probability distribution

Joint probability distribution (for a set variables)

• Defines probabilities for all possible assignments of values to variables in the set

Example: variables Pneumonia and WBCcount

P(pneumonia, WBCcount)

Is represented by 2×3 matrix

WBCcount

Pneumonia

	high	normal	low
True	0.0008	0.0001	0.0001
False	0.0042	0.9929	0.0019

CS 1571 Intro to Al

M. Hauskrecht

Joint probabilities

Marginalization

- reduces the dimension of the joint distribution
- Sums variables out

P(*pneumonia*, *WBCcount*) 2×3 matrix

WBCcount

P(*Pneumonia*)

Pneumonia

	high	normal	low]
True	0.0008	0.0001	0.0001	0.001
False	0.0042	0.9929	0.0019	0.999
	0.005	0.993	0.002	

P(WBCcount)

Marginalization (here summing of columns or rows)

CS 1571 Intro to Al

Full joint distribution

- · the joint distribution for all variables in the problem
 - It defines the complete probability model for the problem
- Example: pneumonia diagnosis

Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

 Full joint defines the probability for all possible assignments of values to *Pneumonia*, *Fever*, *Paleness*, *WBCcount*, *Cough*

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=T)

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=T,Paleness=F)

P(Pneumonia=T,WBCcount=High,Fever=T,Cough=F,Paleness=T)

... etc

CS 1571 Intro to Al

M. Hauskrecht

Conditional probabilities

Conditional probability distribution

• Defines probabilities for all possible assignments, given a fixed assignment to some other variable values

P(Pneumonia = true | WBCcount = high)

P(*Pneumonia* | *WBCcount*) 3 element vector of 2 elements

WBCcount

Pneumonia

	high	normal	low
True	0.08	0.0001	0.0001
False	0.92	0.9999	0.9999
	1.0	1.0	1.0

P(Pneumonia = true | WBCcount = high)

+P(Pneumonia = false | WBCcount = high)

CS 1571 Intro to Al

Conditional probabilities

Conditional probability

• Is defined in terms of the joint probability:

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

Example:

$$P(pneumonia=true|WBCcount=high) = \frac{P(pneumonia=true,WBCcount=high)}{P(WBCcount=high)}$$

$$P(pneumonia = false | WBCcount = high) =$$

$$\frac{P(pneumonia = false, WBCcount = high)}{P(WBCcount = high)}$$

CS 1571 Intro to Al

M. Hauskrecht

Conditional probabilities

• Conditional probability distribution.

$$P(A | B) = \frac{P(A, B)}{P(B)}$$
 s.t. $P(B) \neq 0$

 Product rule. Join probability can be expressed in terms of conditional probabilities

$$P(A,B) = P(A \mid B)P(B)$$

 Chain rule. Any joint probability can be expressed as a product of conditionals

$$P(X_{1}, X_{2}, ... X_{n}) = P(X_{n} | X_{1}, ... X_{n-1}) P(X_{1}, ... X_{n-1})$$

$$= P(X_{n} | X_{1}, ... X_{n-1}) P(X_{n-1} | X_{1}, ... X_{n-2}) P(X_{1}, ... X_{n-2})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1}, ... X_{i-1})$$

CS 1571 Intro to Al

Bayes rule

Conditional probability.

$$P(A \mid B) = P(B \mid A)P(A)$$

Bayes rule:

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

When is it useful?

• When we are interested in computing the diagnostic query from the causal probability

$$P(cause | effect) = \frac{P(effect | cause)P(cause)}{P(effect)}$$

- Reason: It is often easier to assess causal probability
 - E.g. Probability of pneumonia causing fever
 vs. probability of pneumonia given fever

CS 1571 Intro to Al

M. Hauskrecht

Bayes Rule in a simple diagnostic inference.

- **Device** (equipment) operating *normally* or *malfunctioning*.
 - Operation of the device sensed indirectly via a sensor
- Sensor reading is either high or low

P(Device status)

malfunctioning
0.1

P(Sensor reading | Device status)

Device\Sensor	high	low
normal	0.1	0.9
malfunctioning	0.6	0.4

CS 1571 Intro to Al

Bayes Rule in a simple diagnostic inference.

• **Diagnostic inference:** compute the probability of device operating normally or malfunctioning given a sensor reading

P(Device status | Sensor reading = high) = ?

$$= \begin{pmatrix} P(\text{Device status} = normal \mid \text{Sensor reading} = high) \\ P(\text{Device status} = malfunctio ning} \mid \text{Sensor reading} = high) \end{pmatrix}$$

- Note that typically the opposite conditional probabilities are given to us: they are much easier to estimate
- **Solution:** apply **Bayes rule** to reverse the conditioning variables

CS 1571 Intro to Al

M. Hauskrecht

Probabilistic inference

Various inference tasks:

• Diagnostic task. (from effect to cause)

$$\mathbf{P}(Pneumonia | Fever = T)$$

• Prediction task. (from cause to effect)

$$\mathbf{P}(Fever | Pneumonia = T)$$

• Other probabilistic queries (queries on joint distributions).

$$\mathbf{P}(Fever)$$

 $\mathbf{P}(Fever, ChestPain)$

CS 1571 Intro to Al

Inference

Any query can be computed from the full joint distribution !!!

Joint over a subset of variables is obtained through marginalization

$$P(A = a, C = c) = \sum_{i} \sum_{j} P(A = a, B = b_{i}, C = c, D = d_{j})$$

Conditional probability over set of variables, given other variables' values is obtained through marginalization and definition of conditionals

$$P(D = d \mid A = a, C = c) = \frac{P(A = a, C = c, D = d)}{P(A = a, C = c)}$$

$$= \frac{\sum_{i} P(A = a, B = b_{i}, C = c, D = d)}{\sum_{i} \sum_{j} P(A = a, B = b_{i}, C = c, D = d_{j})}$$

Inference

Any query can be computed from the full joint distribution !!!

• Any joint probability can be expressed as a product of conditionals via the **chain rule**.

$$P(X_{1}, X_{2}, ... X_{n}) = P(X_{n} | X_{1}, ... X_{n-1}) P(X_{1}, ... X_{n-1})$$

$$= P(X_{n} | X_{1}, ... X_{n-1}) P(X_{n-1} | X_{1}, ... X_{n-2}) P(X_{1}, ... X_{n-2})$$

$$= \prod_{i=1}^{n} P(X_{i} | X_{1}, ... X_{i-1})$$

Sometimes it is easier to define the distribution in terms of conditional probabilities:

- E.g.
$$\mathbf{P}(Fever \mid Pneumonia = T)$$

 $\mathbf{P}(Fever \mid Pneumonia = F)$

CS 1571 Intro to Al

Modeling uncertainty with probabilities

- Defining the **full joint distribution** makes it possible to represent and reason with uncertainty in a uniform way
- We are able to handle an arbitrary inference problem

Problems:

- Space complexity. To store a full joint distribution we need to remember $O(d^n)$ numbers.
 - n number of random variables, d number of values
- Inference (time) complexity. To compute some queries requires $O(d_n^n)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

CS 1571 Intro to Al

M. Hauskrecht

Medical diagnosis example

- Space complexity.
 - Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
 WBCcount (3: high, normal, low), paleness (2: T,F)
 - Number of assignments: 2*2*2*3*2=48
 - We need to define at least 47 probabilities.
- Time complexity.
 - Assume we need to compute the marginal of Pneumonia=T from the full joint

$$P(Pneumonia = T) =$$

$$= \sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, n, l} \sum_{u \in T, F} P(Fever = i, Cough = j, WBCcount = k, Pale = u)$$

- Sum over: 2*2*3*2=24 combinations

CS 1571 Intro to Al

Modeling uncertainty with probabilities

- Knowledge based system era (70s early 80's)
 - Extensional non-probabilistic models
 - Solve the space, time and acquisition bottlenecks in probability-based models
 - froze the development and advancement of KB systems and contributed to the slow-down of AI in 80s in general
- Breakthrough (late 80s, beginning of 90s)
 - Bayesian belief networks
 - Give solutions to the space, acquisition bottlenecks
 - Partial solutions for time complexities
- Bayesian belief network

CS 1571 Intro to Al

M. Hauskrecht

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

• A and B are conditionally independent given C

$$P(A, B | C) = P(A | C)P(B | C)$$

 $P(A | C, B) = P(A | C)$

CS 1571 Intro to Al