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Uncertainty

To make diagnostic inference possible we need to represent
knowledge (axioms) that relate symptoms and diagnosis

Pneumonia

v T

Problem: disease/symptoms relations are not deterministic

— They are uncertain (or stochastic) and vary from patient
to patient
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Modeling the uncertainty.

Key challenges:
* How to represent the relations in the presence of uncertainty?
* How to manipulate such knowledge to make inferences?

— Humans can reason with uncertainty.

S
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Methods for representing uncertainty

Probability theory

* A well defined theory for modeling and reasoning in the
presence of uncertainty

* A natural choice to replace certainty factors

Facts (propositional statements)
* Are represented via random variables with two or more values
Example: Pneumonia is a random variable
values: True and False
» Each value can be achieved with some probability:

P(Pneumonia=True)=0.001
P(WBCcount = high) =0.005
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Modeling uncertainty with probabilities

Probabilistic extension of propositional logic.
* Propositions:
— statements about the world

— Represented by the assignment of values to random
variables

e Random variables:

! — Boolean Pneumonia 1is either True, False
Random variable Values
! — Multi-valued Pain isoneof {Nopain Mild, Moderate Severe
Random variable Values
— Continuous HeartRate is avalue in <0;250 >
Random variable Values
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Probabilities

Unconditional probabilities (prior probabilities)

P(Pneumonia)=0.001

P(Pneumonia = False) =

or

0.999

P(WBCcount = high) =0.005

Probability distribution

* Defines probabilities for all possible value assignments to a

random variable

» Values are mutually exclusive

P(Preumonia =True) =0.001 Pneumonia |P(Pneumonia)
‘ True 0.001
P(Pneumonia = False) =0.999 False 0.999
M. Hauskrecht

P(Pneumonia = True) =0.001
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Probability distribution

Defines probability for all possible value assignments

Example 1:

P(Pneumonia=True) =

0.001

P(Pneumonia= False) =0.999

P(Pneumonia = True)+ P(Pneumonia = False) =1
Probabilities sum to 1 !!!

Example 2:

P(WBCcount = high) =

0.005

P(WBCcount = normal) =0.993

P(WBCcount = high) =

0.002

Pneumonia |P(Pneumonia)
True 0.001
False 0.999

WBCcount | P(WBCcount)
high 0.005
normal 0.993
low 0.002
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Joint probability distribution

Joint probability distribution (for a set variables)

» Defines probabilities for all possible assignments of values to
variables in the set

Example: variables Pneumonia and WBCcount
P(pneumonia ,WBCcount)

Is represented by ~ 2x3 matrix

WBCcount

high  normal  low

True | 0.0008 0.0001 0.0001

Pneumonia
False | 0.0042 0.9929 0.0019
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Joint probabilities
Marginalization

* reduces the dimension of the joint distribution
* Sums variables out

P(pneumonia ,WBCcount)  2x3 matrix

P(Pneumonia)
WBCcount

high  normal  low
True | 0.0008 0.0001 0.0001 0.001
False | 0.0042  0.9929 0.0019 0.999
0.005 0993  0.002 |

Pneumonia

P(WBCcount)

Marginalization (here summing of columns or rows)
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Full joint distribution

* the joint distribution for all variables in the problem

— It defines the complete probability model for the problem
+ Example: pneumonia diagnosis
Variables: Pneumonia, Fever, Paleness, WBCcount, Cough

— Full joint defines the probability for all possible assignments of
values to Pneumonia, Fever, Paleness, WBCcount, Cough

P(Pneumonia=T,WBCcount= High, Fever=T,Cough=T, Paleness=T)
P(Pneumonia=T ,WBCcount= High, Fever=T,Cough=T, Paleness=F)
P(Pneumonia=T,WBCcount= High, Fever=T,Cough=F, Paleness=T)

etc
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Pneumonia

P(Pneumonia| WBCcount)

Conditional probabilities

Conditional probability distribution
» Defines probabilities for all possible assignments, given a

fixed assignment to some other variable values

P(Pneumonia = true | WBCcount = high)

3 element vector of 2 elements
WBCcount

high  normal  low

True 0.08 0.0001  0.0001
False 0.92 0.9999 0.9999
1.0 1.0 1.0

P(Pneumonia = true | WBCcount = high)
+ P(Pneumonia = false| WBCcount = high)

M. Hauskrecht
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Conditional probabilities

Conditional probability
* Is defined in terms of the joint probability:

P(A,B)

P(A|B) = ) S P(B)#0

+ Example:

P(pneumonia= true| WBCcount= high) =
P(pneumonia= true, WBCcount= high)

P(WBCcount= high)

P(pneumonia= false| WBCcount= high) =
P(pneumonia= false, WBCcount= high)
P(WBCcount= high)
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Conditional probabilities

* Conditional probability distribution.

P(4|B)= @ s.t. P(B)#0

* Product rule. Join probability can be expressed in terms of
conditional probabilities

P(A4,B) = P(4| B)P(B)

* Chain rule. Any joint probability can be expressed as a
product of conditionals

P(X,, X,,... X,)=P(X, | X, ... X, )P(X, ...X, )
:P(Xn |X1,"'Xn—l)P(Xn—l |X1,"'Xn—2)P(X1,"'Xn—Z)
=T P X, ..X. )
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Bayes rule
Conditional probability.

P(AI B = P(A.B)= P(B| A)P(4)
Bayes rule: P(B| A)P(A)

P(4|B) = 8)

When is it useful?

* When we are interested in computing the diagnostic query
from the causal probability

P(cause| effect) = P(effect | cause) P(cause)
P(effect)
* Reason: It is often easier to assess causal probability
— E.g. Probability of pneumonia causing fever
vs. probability of pneumonia given fever
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Bayes Rule in a simple diagnostic inference.

* Device (equipment) operating normally or malfunctioning.
— Operation of the device sensed indirectly via a sensor
» Sensor reading is either high or low

P(Device status)

@ normal malfunctioning

0.9 0.1

P(Sensor reading| Device status)

Device\Sensor high low
@ normal 0.1 0.9

malfunctioning 0.6 0.4
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Bayes Rule in a simple diagnostic inference.

* Diagnostic inference: compute the probability of device
operating normally or malfunctioning given a sensor reading

P (Device status |Sensor reading = high )=?

B P(Device status = normal | Sensor reading = high)
| P(Device status = malfunctio ning | Sensor reading = high)

» Note that typically the opposite conditional probabilities are
given to us: they are much easier to estimate

* Solution: apply Bayes rule to reverse the conditioning
variables
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Probabilistic inference

Various inference tasks:

* Diagnostic task. (from effect to cause)

P(Pneumonia| Fever=T)
* Prediction task. (from cause to effect)

P(Fever| Pneumonia=T)

* Other probabilistic queries (queries on joint distributions).

P(Fever)
P(Fever,ChestPain)
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Inference

Any query can be computed from the full joint distribution !!!

» Joint over a subset of variables is obtained through
marginalization

P(A=a,C=c)=) Y P(A=a,B=b,C=c,D=d)
i

» Conditional probability over set of variables, given other
variables’ values is obtained through marginalization and
definition of conditionals

P(D=d|A:a,czc):P(A=a,C=c,D:d)

P(A=a,C=c)
Y P(A4=a,B=b,C=c,D=d)

ZZZP(Aza,szi,Czc,Dzdj)

i
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Inference

Any query can be computed from the full joint distribution !!!

* Any joint probability can be expressed as a product of
conditionals via the chain rule.

P(X,,X,,...X,)=P(X, | X, ... X, )P(X, ... X, )
=P(X, | X, .. X, )P(X, | X, ... X, ) )P(X, ... X, ,)

=11 P& 1X, ..X. )

* Sometimes it is easier to define the distribution in terms of
conditional probabilities:

- Eg P(Fever| Pneumonia=T)
P(Fever| Pneumonia = F)
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Modeling uncertainty with probabilities

* Defining the full joint distribution makes it possible to
represent and reason with uncertainty in a uniform way

« We are able to handle an arbitrary inference problem
Problems:

— Space complexity. To store a full joint distribution we
need to remember O(d") numbers.

n —number of random variables, d — number of values
— Inference (time) complexity. To compute some queries
requires O(d")  steps.
— Acquisition problem. Who is going to define all of the
probability entries?
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Medical diagnosis example

* Space complexity.
— Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F),
WBCcount (3: high, normal, low), paleness (2: T,F)
— Number of assignments: 2*2*2*3%2=48
— We need to define at least 47 probabilities.
* Time complexity.
— Assume we need to compute the marginal of Pneumonia=T
from the full joint
P(Pneumonia=T) =
= Z z Z ZP(Fever =1,Cough = j,WBCcount = k, Pale = u)

ieT ,F jeT ,F k=h,n,l uel ,F

— Sum over: 2*2*3*2=24 combinations
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Modeling uncertainty with probabilities

* Knowledge based system era (70s — early 80°s)
— Extensional non-probabilistic models

— Solve the space, time and acquisition bottlenecks in
probability-based models

— froze the development and advancement of KB systems
and contributed to the slow-down of Al in 80s in general

» Breakthrough (late 80s, beginning of 90s)
— Bayesian belief networks
* Give solutions to the space, acquisition bottlenecks
* Partial solutions for time complexities
» Bayesian belief network
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Bayesian belief networks (BBNs)

Bayesian belief networks.

» Represent the full joint distribution over the variables more
compactly with a smaller number of parameters.

» Take advantage of conditional and marginal independences
among random variables

* A and B are independent
P(A,B)=P(A)P(B)
* A and B are conditionally independent given C
P(A,B|C)=P(A|C)P(B|C)
P(A|C,B)=P(A4]|C)
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