CS 1571 Introduction to AI Lecture 22

Planning (cont.)

Uncertainty

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Administration

- No new homework this week
- Homework 9 is due on Monday, November 27, 2006
- Final exam:
 - December 11, 2006
 - 12:00-1:50pm, 5129 Sennott Square

CS 1571 Intro to Al

Planning

Planning problem:

- find a sequence of actions that achieves some goal
- An instance of a search problem

Methods for modeling and solving a planning problem:

- State space search
- Situation calculus based on FOL
 - Inference rules
 - Resolution refutation

CS 1571 Intro to Al

M. Hauskrecht

Planning problems

Properties of (real-world) planning problems:

- The description of the state of the world is very complex
- Many possible actions to apply in any step
- Actions are typically local
 - - they affect only a small portion of a state description
- Goals are defined as conditions and refer only to a small portion of state
- Plans consists of a long sequence of actions
- The state space search and situation calculus frameworks may be too cumbersome and inefficient to represent and solve the planning problems

CS 1571 Intro to Al

Situation calculus: problems

Extends first order logic to situations

Allows us to model activities and changes in the world

Problems:

- Frame problem refers to:
 - The need to represent a large number of frame axioms
- Inferential frame problem:
 - We need to derive properties that remain unchanged

Other problems:

- Qualification problem enumeration of all possibilities under which an action holds
- Ramification problem enumeration of all inferences that follow from some facts

CS 1571 Intro to Al

M. Hauskrecht

STRIPS planner

Defines a **restricted representation language** as compared to the situation calculus

Advantage: leads to more efficient planning algorithms.

- State-space search with structured representations of states, actions and goals
- Action representation avoids the frame problem

STRIPS planning problem:

• much like a standard search (planning) problem;

CS 1571 Intro to Al

Search in STRIPS

Objective:

Find a sequence of operators (a plan) from the initial state to the state satisfying the goal

Two approaches to build a plan:

- Forward state space search (goal progression)
 - Start from what is known in the initial state and apply operators in the order they are applied
- Backward state space search (goal regression)
 - Start from the description of the goal and identify actions that help to reach the goal

CS 1571 Intro to Al

M. Hauskrecht

State-space search

- Forward and backward state-space planning approaches:
 - Work with strictly linear sequences of actions
- Disadvantages:
 - no problem decompositions
 - the goal consists of a set of independent or nearly independent sub-goals
 - Plans cannot be built from the middle
 - No **least commitment** in terms of the action ordering

CS 1571 Intro to Al

State space vs. plan space search

• Plan: Defines a sequence of operators to be performed

• Partial plan:

- plan that is not complete
 - Some plan steps are missing
- some orderings of operators are not finalized
 - Only relative order is given

• Benefits of plan space search:

- Goal decomposition
- We do not have to commit to a specific action sequence

CS 1571 Intro to Al

M. Hauskrecht

State-space vs. plan-space search State-space search **STRIPS** operator S_0 State (set of formulas) Plan-space search Finish Plan transformation operators Start Incomplete (partial) plan M. Hauskrecht CS 1571 Intro to Al

Partial order planning.

• Remember we search the space of partial plans

• POP: is sound and complete

CS 1571 Intro to Al

M. Hauskrecht

Hierarchical planners

Extension of STRIPS planners.

• Example planner: ABSTRIPS.

Idea:

- Assign a criticality level to each conjunct in preconditions list of the operator
- Planning process refines the plan gradually based on criticality threshold, starting from the highest criticality value:
 - Develop the plan ignoring preconditions of criticality less than the criticality threshold value (assume that preconditions for lower criticality levels are true)
 - Lower the threshold value by one and repeat previous step

CS 1571 Intro to Al

Start position Goal position Hierarchical planning Assume: the largest disk – criticality level 2 the medium disk – criticality level 1 the smallest disk – criticality level 0

Planning with incomplete information

Some conditions relevant for planning can be:

true, false or unknown

Example:

- Robot and the block is in Room 1
- Goal: get the block to Room 4
- **Problem:** The door between Room1 and 4 can be closed

CS 1571 Intro to Al

M. Hauskrecht

Planning with incomplete information

Initially we do not know whether the door is opened or closed:

- Different plans:
 - **If not closed**: pick the block, go to room 4, drop the block
 - If closed: pick the block, go to room2, then room3 then room4 and drop the block

CS 1571 Intro to Al

Conditional planners

- Are capable to create conditional plans that cover all possible situations (contingencies) also called **contingency planners**
- Plan choices are applied when the missing information becomes available
- Missing information can be sought actively through actions
 - Sensing actions

CS 1571 Intro to Al

M. Hauskrecht

Sensing actions

Example:

CheckDoor(d): checks the door d

Preconditions: Door(d,x,y) – one way door between x and y

& At(Robot,x)

Effect: (Closed(d) v¬Closed(d)) - one will become true

CS 1571 Intro to Al

Conditional plans

Sensing actions and conditions incorporated within the plan:

CS 1571 Intro to Al

M. Hauskrecht

Representing and reasoning with uncertainty

CS 1571 Intro to Al

KB systems. Medical example.

We want to build a KB system for the diagnosis of pneumonia.

Problem description:

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
 - Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.

Representation of a patient case:

• Statements that hold (are true) for the patient.

E.g: Fever = True

Cough = False

WBCcount=High

Diagnostic task: we want to decide whether the patient suffers from the pneumonia or not given the symptoms

CS 1571 Intro to Al

M. Hauskrecht

Uncertainty

To make diagnostic inference possible we need to represent knowledge (axioms) that relate symptoms and diagnosis

Problem: disease/symptoms relations are not deterministic

 They are uncertain (or stochastic) and vary from patient to patient

CS 1571 Intro to Al

Uncertainty

Two types of uncertainty:

- Disease
 — Symptoms uncertainty
 - A patient suffering from pneumonia may not have fever all the times, may or may not have a cough, white blood cell test can be in a normal range.
- Symptoms Disease uncertainty
 - High fever is typical for many diseases (e.g. bacterial diseases) and does not point specifically to pneumonia
 - Fever, cough, paleness, high WBC count combined do not always point to pneumonia

CS 1571 Intro to Al

M. Hauskrecht

M. Hauskrecht

Uncertainty

Why are relations uncertain?

- Observability
 - It is impossible to observe all relevant components of the world
 - Observable components behave stochastically even if the underlying world is deterministic
- Efficiency, capacity limits
 - It is often impossible to enumerate and model all components of the world and their relations
 - abstractions can become stochastic

Humans can reason with uncertainty !!!

- Can computer systems do the same?

CS 1571 Intro to Al

Modeling the uncertainty.

Key challenges:

- How to represent the relations in the presence of uncertainty?
- How to manipulate such knowledge to make inferences?
 - Humans can reason with uncertainty.

Methods for representing uncertainty

Extensions of the propositional and first-order logic

Use, uncertain, imprecise statements (relations)

Example: Propositional logic with certainty factors

Very popular in 70-80s in knowledge-based systems (MYCIN)

• Facts (propositional statements) are assigned a certainty value reflecting the belief in that the statement is satisfied:

$$CF(Pneumonia = True) = 0.7$$

• Knowledge: typically in terms of modular rules

1. The patient has cough, and
2. The patient has a high WBC count, and
3. The patient has fever
Then with certainty 0.7 the patient has pneumonia

CS 1571 Intro to Al

Certainty factors

Problem 1:

• Chaining of multiple inference rules (propagation of uncertainty)

Solution:

• Rules incorporate tests on the certainty values

$$(A \text{ in } [0.5,1]) \land (B \text{ in } [0.7,1]) \rightarrow C \text{ with } CF = 0.8$$

Problem 2:

• Combinations of rules with the same conclusion

(A in [0.5,1])
$$\land$$
 (B in [0.7,1]) \rightarrow C with CF = 0.8
(E in [0.8,1]) \land (D in [0.9,1]) \rightarrow C with CF = 0.9

• What is the resulting CF(C)?

CS 1571 Intro to Al

M. Hauskrecht

Certainty factors

• Combination of multiple rules

(A in [0.5,1])
$$\land$$
 (B in [0.7,1]) \rightarrow C with CF = 0.8
(E in [0.8,1]) \land (D in [0.9,1]) \rightarrow C with CF = 0.9

• Three possible solutions

$$CF(C) = \max[0.9; 0.8] = 0.9$$

 $CF(C) = 0.9*0.8 = 0.72$
 $CF(C) = 0.9+0.8-0.9*0.8 = 0.98$

Problems:

- Which solution to choose?
- All three methods break down after a sequence of inference rules

CS 1571 Intro to Al

Methods for representing uncertainty

Probability theory

- A well defined theory for modeling and reasoning in the presence of uncertainty
- · A natural choice to replace certainty factors

Facts (propositional statements)

• Are represented via **random variables** with two or more values

Example: *Pneumonia* is a random variable

values: True and False

• Each value can be achieved with some probability:

P(Pneumonia = True) = 0.001

P(WBCcount = high) = 0.005

CS 1571 Intro to Al