CS 1571 Introduction to AI Lecture 2

Introduction (cont.) Problem solving by searching

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Course administrivia

Instructor: Milos Hauskrecht

5329 Sennott Square milos@cs.pitt.edu

TA: Swapna Somasundaran

5422 Sennott Square swapna@cs.pitt.edu

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Textbook

Course textbook:

Stuart Russell, Peter Norvig.

Artificial Intelligence: A modern approach.

2nd edition, Prentice Hall, 2002

Other widely used AI textbooks:

Dean, Allen, Aloimonos: Artificial Intelligence.

P. Winston: Artificial Intelligence, 3rd ed.

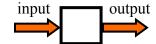
N. Nillson: Principles of AI.

CS 1571 Intro to Al

M. Hauskrecht

Artificial Intelligence

- The field of **Artificial intelligence**:
 - The design and study of computer systems that behave intelligently
- AI programs:
 - Go beyond numerical computations and manipulations
 - Focus on problems that require reasoning (intelligence)
- Two aspects of AI research:
 - Engineering
 - solving of hard problems
 - Cognitive
 - Understanding the nature of human intelligence


CS 1571 Intro to Al

What is Artificial Intelligence?

Four different views on what makes an AI system!! Depends on what matters more in the evaluation.

· Reasoning vs. Behavior

- the computational process or the end-product matters
- · Human performance vs. Rationality
 - Compare against human model (with its weaknesses) or a normative "ideal" model (rational system)

CS 1571 Intro to Al

M. Hauskrecht

AI today

AI is more rigorous and depends strongly on: applied math, statistics, probability, control and decision theories

Recent theoretical advances and solutions:

- Methods for dealing with uncertainty
- Planning
- Learning
- Optimizations

Applications:

- Focus on **partial intelligence** (not all human capabilities)
- Systems with components of intelligence in a specific application area; not general multi-purpose intelligent systems

CS 1571 Intro to Al

AI applications: Software systems.

Diagnosis of software, technical components

Adaptive systems

- Adapt to the user
- Examples:
 - Intelligent interfaces

(http://www.research.microsoft.com/research/dtg/))

- Intelligent helper applications, intelligent tutoring systems
- Web agents:
 - · crawlers
 - softbots, shopbots (see e.g. http://www.botspot.com/)

CS 1571 Intro to Al

M. Hauskrecht

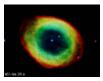
AI applications: Speech recognition.

- Speech recognition systems:
 - Hidden Markov models
- Adaptive speech systems
 - Adapt to the user (training)
 - continuous speech
 - commercially available software (e.g. IBM http://www-3.ibm.com/software/speech/)
- Multi-user speech recognition systems
 - Restricted (no training)
 - Customer support:
 - Airline schedules, baggage tracking;
 - Credit card companies.

CS 1571 Intro to Al

Applications: Space exploration

Autonomous rovers, intelligent probes


Telescope scheduling

Analysis of data

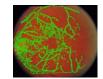
CS 1571 Intro to Al

M. Hauskrecht

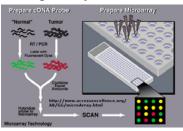
AI applications: Medicine.

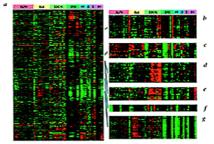
- Medical diagnosis:
 - Pathfinder. Lymph-node pathology.
 - QMR system. Internal medicine.
- Medical imaging

http://www.ai.mit.edu/projects/medical-vision/


- Image guided surgery (Eric Grimson, MIT)

- Image analysis and enhancement





CS 1571 Intro to Al

AI applications: Bioinformatics.

- Genomics and Proteomics
 - Sequence analysis
 - Prediction of gene regions on DNA
 - Analysis of micro-array and proteomic MS profiles: find genes, proteins (peptides) that characterize a specific disease
 - Regulatory networks

Example of a microarray used in gene sequencing

CS 1571 Intro to Al

M. Hauskrecht

AI applications: Transportation.

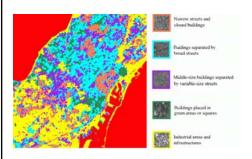
Autonomous vehicle control:

- ALVINN (CMU, Pomerleau 1993).
 - · Autonomous vehicle
 - Driving across US
- DARPA challenge (http://www.darpa.mil/grandchallenge/)
 - Drive across a Mojave desert course
 - 2004 no vehicle finished the course
 - 2005 5 vehicles finished
 - The winner: Stanford team

AI applications: Transportation.

- Vision systems:
 - Automatic plate recognition

Pedestrian detection (Daimler-Benz)



- Traffic monitoring
- Route optimizations

CS 1571 Intro to Al

M. Hauskrecht

Classification of images or its parts

CS 1571 Intro to Al

AI applications: Game playing.

- Backgammon
 - TD-backgammon
 - a program that learned to play at the championship level (from scratch).
 - reinforcement learning
- Chess
 - Deep blue (IBM) program beats Kasparov.

Bridge

• Etc.

CS 1571 Intro to Al

M. Hauskrecht

AI applications.

- Robotic toys
 - Sony's Aibo
 (http://www.us.aibo.com/)

- · Humanoid robot
 - Honda's ASIMO(http://world.honda.com/robot/)

M. Hauskrecht

CS 1571 Intro to Al

Other application areas

- Text classification, document sorting:
 - Web pages, e-mails
 - Articles in the news
- · Video, image classification
- · Music composition, picture drawing
- Entertainment ©

CS 1571 Intro to Al

M. Hauskrecht

Topics

- · Problem solving and search.
 - Formulating a search problem, Search methods,
 Combinatorial and Parametric Optimization.
- Logic and knowledge representations.
 - Logic, Inference
- Planning.
 - Situation calculus, STRIPS, Partial-order planners,
- Uncertainty.
 - Modeling uncertainty, Bayesian belief networks, Inference in BBNs, Decision making in the presence of uncertainty.
- Machine Learning
 - May be ...

CS 1571 Intro to Al

Problem solving by searching

CS 1571 Intro to Al

M. Hauskrecht

Example

• Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem?

Example

• Assume a problem of computing the roots of the quadratic equation

$$ax^2 + bx + c = 0$$

Do you consider it a challenging problem? Hardly we just apply the standard formula:

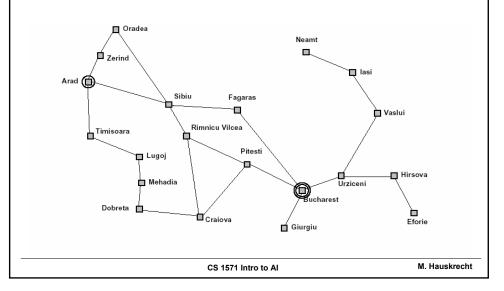
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

CS 1571 Intro to Al

M. Hauskrecht

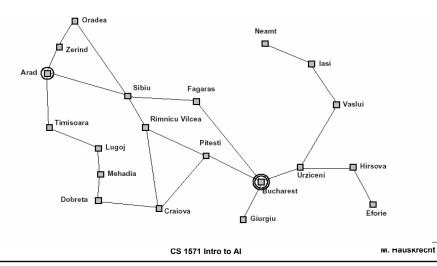
Solving problems by searching

- Some problems have a straightforward solution
 - Just apply the formula, or follow a standardized procedure


Example: solution of the quadratic equation

- Hardly a sign of intelligence
- More interesting problems require **search**:
 - more than one possible alternative needs to be explored before the problem is solved
 - the number of alternatives to search among can be very large, even infinite.

CS 1571 Intro to Al


Search example: Traveler problem

• Find a route from one city (Arad) to the other (Bucharest)

Example. Traveler problem

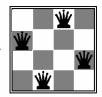
- Another flavor of the traveler problem:
 - find the route with the minimum length between S and T

Example. Puzzle 8.

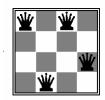
• Find the sequence of the empty tile moves from the initial game position to the designated target position

Initial position

Goal position



CS 1571 Intro to Al


M. Hauskrecht

Example. N-queens problem.

Find a configuration of n queens not attacking each other

A goal configuration

A bad configuration

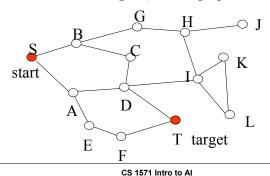
CS 1571 Intro to Al

A search problem

is defined by:

- A search space:
 - The set of objects among which we search for the solution Example: objects = routes between cities, or N-queen configurations
- A goal condition
 - What are the characteristics of the object we want to find in the search space?
 - Examples:
 - Path between cities A and B
 - Path between A and B with the smallest number of links
 - Path between A and B with the shortest distance
 - Non-attacking n-queen configuration

CS 1571 Intro to Al

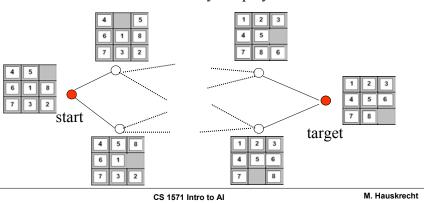

M. Hauskrecht

Search

- Search (process)
 - The process of exploration of the search space
- The efficiency of the search depends on:
 - The search space and its size
 - Method used to explore (traverse) the search space
 - Condition to test the satisfaction of the search objective (what it takes to determine I found the desired goal object)
- Important to remember !!!
 - Conveniently chosen search space and the exploration policy can have a profound effect on the efficiency of the solution

CS 1571 Intro to Al

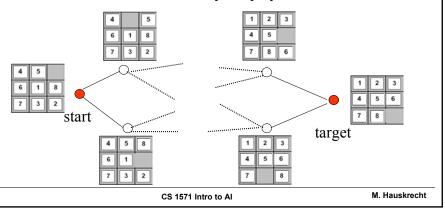
- Many search problems can be naturally represented as graph search problems
- Typical example: Route finding
 - Map corresponds to the graph, nodes to cities, links to available connections between cities
 - Goal: find a route (path) in the graph from S to T


M. Hauskrecht

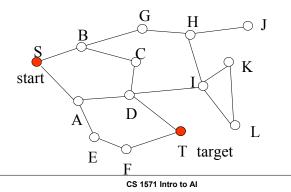
Graph search

• Less obvious conversion:

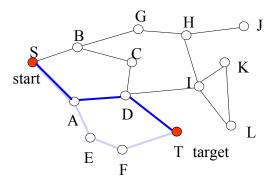
Puzzle 8. Find a sequence of moves from the initial configuration to the goal configuration.


- nodes corresponds to states of the game,
- links to valid moves made by the player

• Less obvious conversion:


Puzzle 8. Find a sequence of moves from the initial configuration to the goal configuration.

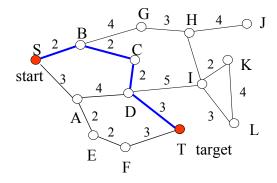
- nodes corresponds to states of the game,
- links to valid moves made by the player



Graph search problem

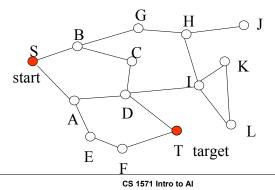
- **States** game positions, or locations in the map that are represented by nodes in the graph
- Operators connections between cities, valid moves
- **Initial state** start position, start city
- Goal state target position (positions), target city (cities)

- More complex versions of the graph search problems:
 - Find a minimal length path
 (= route with the smallest number of connections, the shortest sequence of moves that solves Puzzle 8)



CS 1571 Intro to Al

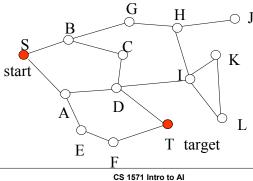
M. Hauskrecht


Graph search

- More complex versions of the graph search problems:
 - Find a minimum cost path(= a route with the shortest distance)

CS 1571 Intro to Al

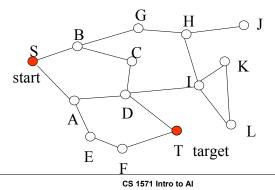
- How to find the path in between S and T?
- A strawman solution:
 - Generate systematically all sequences of 1, 2, 3, ... edges
 - Check if the sequence yields a path between S and T.
- Can we do better?



Graph search

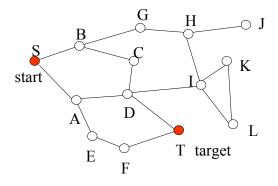
Can we do better?

- We are not interested in sequences that do not start in S and that are not valid paths
- Solution:


- ?

M. Hauskrecht

Can we do better?


- We are not interested in sequences that do not start in S and that are not valid paths
- Solution:
 - Look only on valid paths starting from S

M. Hauskrecht

Graph search

• Being smarter about the space we search for the solution pays off in terms of the search process efficiency.

CS 1571 Intro to Al