# CS 1571 Introduction to AI Lecture 19

# **Inference in first-order logic**

#### Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

# Logical inference in FOL

### **Logical inference problem:**

• Given a knowledge base KB (a set of sentences) and a sentence  $\alpha$ , does the KB semantically entail  $\alpha$ ?

$$KB \mid = \alpha$$
 ?

In other words: In all interpretations in which sentences in the KB are true, is also  $\alpha$  true?

Logical inference problem in the first-order logic is undecidable !!!. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

CS 1571 Intro to Al

# Logical inference problem in the Propositional logic

### Computational procedures that answer:

$$KB = \alpha$$
?

#### Three approaches:

- Truth-table approach
- Inference rules



- Conversion to the inverse SAT problem
  - Resolution-refutation

CS 1571 Intro to Al

M. Hauskrecht

### Inference rules

- Inference rules from the propositional logic:
  - Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

Resolution

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

- and others: And-introduction, And-elimination, Orintroduction, Negation elimination
- Additional inference rules are needed for sentences with quantifiers and variables
  - Must involve variable substitutions

CS 1571 Intro to Al

### Variable substitutions

- Variables in the sentences can be substituted with terms.
   (terms = constants, variables, functions)
- Substitution:
  - Is represented by a mapping from variables to terms  $\{x_1/t_1, x_2/t_2, ...\}$
  - Application of the substitution to sentences

$$SUBST(\{x/Sam, y/Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$
  
 $SUBST(\{x/z, y/fatherof(John)\}, Likes(x, y)) =$ 

CS 1571 Intro to Al

Likes(z, fatherof(John))

M. Hauskrecht

# Inference rules for quantifiers

• Universal elimination

$$\frac{\forall x \ \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

- substitutes a variable with a constant symbol

 $\forall x \ Likes(x, IceCream)$  Likes(Ben, IceCream)

• Existential elimination.

$$\frac{\exists x \, \phi(x)}{\phi(a)}$$

 Substitutes a variable with a constant symbol that does not appear elsewhere in the KB

 $\exists x \ Kill(x, Victim)$  Kill(Murderer, Victim)

CS 1571 Intro to Al

# Inference rules for quantifiers

• Universal instantiation (introduction)

$$\frac{\phi}{\forall x \ \phi}$$
  $x - \text{is not free in } \phi$ 

– Introduces a universal variable which does not affect  $\phi$  or its assumptions

$$Sister(Amy, Jane)$$
  $\forall x Sister(Amy, Jane)$ 

• Existential instantiation (introduction)

$$\frac{\phi(a)}{\exists x \phi(x)} \qquad a - \text{is a ground term in } \phi$$
$$x - \text{is not free in } \phi$$

 Substitutes a ground term in the sentence with a variable and an existential statement

$$Likes(Ben, IceCream)$$
  $\exists x \ Likes(x, IceCream)$ 

CS 1571 Intro to Al

M. Hauskrecht

# Unification

• **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms

$$\frac{\forall x \ \phi(x)}{\phi(a)}$$
  $a$  - is a constant symbol

- Solution: Try substitutions that may help
  - Use substitutions of "similar" sentences in KB
- Unification takes two similar sentences and computes the substitution that makes them look the same, if it exists

$$UNIFY\ (p,q) = \sigma \ \text{ s.t. } SUBST(\ \sigma,p) = SUBST\ (\sigma,q)$$

CS 1571 Intro to Al

# Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t.  $SUBST(\sigma,p) = SUBST(\sigma,q)$ 

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$

$$UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$$

$$UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$$

$$= \{x / MotherOf(John), y / John\}$$

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

CS 1571 Intro to Al

M. Hauskrecht

# Generalized inference rules.

• Use substitutions that let us make inferences

**Example: Modus Ponens** 

• If there exists a substitution  $\sigma$  such that

SUBST 
$$(\sigma, A_i) = SUBST(\sigma, A_i')$$
 for all i=1,2, n

$$\frac{A_1 \wedge A_2 \wedge \dots A_n \Rightarrow B, \quad A_1', A_2', \dots A_n'}{SUBST(\sigma, B)}$$

- Substitution that satisfies the generalized inference rule can be build via unification process
- Advantage of the generalized rules: they are focused
  - only substitutions that allow the inferences to proceed

CS 1571 Intro to Al

### Resolution inference rule

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\sigma = UNIFY \ (\phi_{i}, \neg \psi_{j}) \neq fail$$

$$\frac{\phi_{1} \lor \phi_{2} \dots \lor \phi_{k}, \quad \psi_{1} \lor \psi_{2} \lor \dots \psi_{n}}{SUBST(\sigma, \phi_{1} \lor \dots \lor \phi_{i-1} \lor \phi_{i+1} \dots \lor \phi_{k} \lor \psi_{1} \lor \dots \lor \psi_{j-1} \lor \psi_{j+1} \dots \psi_{n})}$$

**Example:**  $P(x) \lor Q(x), \neg Q(John) \lor S(y)$ 

CS 1571 Intro to Al

M. Hauskrecht

### **Resolution inference rule**

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\sigma = UNIFY \ (\phi_{i}, \neg \psi_{j}) \neq fail$$

$$\frac{\phi_{1} \lor \phi_{2} \dots \lor \phi_{k}, \quad \psi_{1} \lor \psi_{2} \lor \dots \psi_{n}}{SUBST(\sigma, \phi_{1} \lor \dots \lor \phi_{i-1} \lor \phi_{i+1} \dots \lor \phi_{k} \lor \psi_{1} \lor \dots \lor \psi_{j-1} \lor \psi_{j+1} \dots \psi_{n})}$$

Example:  $P(x) \lor Q(x), \neg Q(John) \lor S(y)$  $P(John) \lor S(y)$ 

CS 1571 Intro to Al

### Inference with resolution rule

- Proof by refutation:
  - Prove that KB,  $\neg \alpha$  is unsatisfiable
  - resolution is refutation-complete
- Main procedure (steps):
  - 1. Convert KB,  $\neg \alpha$  to CNF with ground terms and universal variables only
  - 2. Apply repeatedly the resolution rule while keeping track and consistency of substitutions
  - 3. Stop when empty set (contradiction) is derived or no more new resolvents (conclusions) follow

CS 1571 Intro to Al

M. Hauskrecht

### **Conversion to CNF**

1. Eliminate implications, equivalences

$$(p \Rightarrow q) \rightarrow (\neg p \lor q)$$

2. Move negations inside (DeMorgan's Laws, double negation)

$$\neg(p \land q) \rightarrow \neg p \lor \neg q \qquad \neg \forall x \ p \rightarrow \exists x \neg p \neg(p \lor q) \rightarrow \neg p \land \neg q \qquad \neg \exists x \ p \rightarrow \forall x \neg p \neg \neg p \rightarrow p$$

3. Standardize variables (rename duplicate variables)

$$(\forall x \ P(x)) \lor (\exists x \ Q(x)) \to (\forall x \ P(x)) \lor (\exists y \ Q(y))$$

4. Move all quantifiers left (no invalid capture possible )

$$(\forall x \ P(x)) \lor (\exists y \ Q(y)) \to \forall x \ \exists y \ P(x) \lor Q(y)$$

CS 1571 Intro to Al

### **Conversion to CNF**

- **5. Skolemization** (removal of existential quantifiers through elimination)
- If no universal quantifier occurs before the existential quantifier, replace the variable with a new constant symbol

$$\exists y \ P(A) \lor Q(y) \to P(A) \lor Q(B)$$

• If a universal quantifier precede the existential quantifier replace the variable with a function of the "universal" variable

$$\forall x \; \exists y \; P(x) \lor Q(y) \rightarrow \forall x \; P(x) \lor Q(F(x))$$

F(x) - a special function

- called Skolem function

CS 1571 Intro to Al

M. Hauskrecht

# **Conversion to CNF**

**6. Drop universal quantifiers** (all variables are universally quantified)

$$\forall x \ P(x) \lor Q(F(x)) \to P(x) \lor Q(F(x))$$

7. Convert to CNF using the distributive laws

$$p \lor (q \land r) \rightarrow (p \lor q) \land (p \lor r)$$

The result is a CNF with variables, constants, functions

CS 1571 Intro to Al

# Resolution example

KB

$$\overbrace{\neg P(w) \lor Q(w), \neg Q(y) \lor S(y)}, P(x) \lor R(x), \neg R(z) \lor S(z), \neg S(A)$$

CS 1571 Intro to Al

M. Hauskrecht

# **Resolution example**

**KB** 

 $\neg \alpha$ 

CS 1571 Intro to Al







# **Dealing with equality**

- · Resolution works for first-order logic without equalities
- To incorporate equalities we need an additional inference rule
- Demodulation rule

$$\begin{split} \sigma &= UNIFY\ (\phi_i,t_1) \neq fail \\ \frac{\phi_1 \vee \phi_2 \ldots \vee \phi_k, \quad t_1 = t_2}{SUBST(\{SUBST(\sigma,t_1)/SUBST(\sigma,t_2)\}, \phi_1 \vee \ldots \vee \phi_{i-1} \vee \phi_{i+1} \ldots \vee \phi_k} \end{split}$$

• Example: 
$$\frac{P(f(a)), f(x) = x}{P(a)}$$

- Paramodulation rule: more powerful
- Resolution+paramodulation give a refutation-complete proof theory for FOL

CS 1571 Intro to Al

### **Sentences in Horn normal form**

- Horn normal form (HNF) in the propositional logic
  - a special type of clause with at most one positive literal  $(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$

Typically written as:  $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$ 

- A clause with one literal, e.g. A, is also called a fact
- A clause representing an implication (with a conjunction of positive literals in antecedent and one positive literal in consequent), is also called a rule
- Generalized Modus ponens:
  - is the complete inference rule for KBs in the Horn normal form. Not all KBs are convertible to HNF !!!

CS 1571 Intro to Al

M. Hauskrecht

### Horn normal form in FOL

First-order logic (FOL)

adds variables and quantifiers, works with terms
 Generalized modus ponens rule:

$$\sigma = \text{a substitution s.t.} \ \forall i \ SUBST(\sigma, \phi_i') = SUBST(\sigma, \phi_i)$$
$$\frac{\phi_1', \phi_2' \dots, \phi_n', \quad \phi_1 \wedge \phi_2 \wedge \dots \phi_n \Rightarrow \tau}{SUBST(\sigma, \tau)}$$

### Generalized modus ponens:

- is **complete** for the KBs with sentences in Horn form;
- Not all first-order logic sentences can be expressed in this form

CS 1571 Intro to Al

# Forward and backward chaining

Two inference procedures based on modus ponens for **Horn KBs**:

Forward chaining

**Idea:** Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

**Typical usage:** If we want to infer all sentences entailed by the existing KB.

Backward chaining (goal reduction)

**Idea:** To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

**Typical usage:** If we want to prove that the target (goal) sentence  $\alpha$  is entailed by the existing KB.

Both procedures are complete for KBs in Horn form !!!

CS 1571 Intro to Al

M. Hauskrecht

# Forward chaining example

Forward chaining

**Idea:** Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied Assume the KB with the following rules:

KB: R1: Steamboat  $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$ 

R2: Sailboat  $(y) \land RowBoat (z) \Rightarrow Faster (y, z)$ 

R3:  $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ 

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

Theorem: Faster (Titanic, PondArrow)

?

CS 1571 Intro to Al

# Forward chaining example

KB: R1: Steamboat  $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$ 

R2: Sailboat  $(y) \land RowBoat(z) \Rightarrow Faster(y, z)$ 

R3:  $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ 

F1: Steamboat (Titanic)
F2: Sailboat (Mistral)

F2: Sailboat (Mistral)
F3: RowBoat(PondArrow)

?

CS 1571 Intro to Al

M. Hauskrecht

# Forward chaining example

KB: R1: Steamboat  $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$ 

R2: Sailboat  $(y) \land RowBoat(z) \Rightarrow Faster(y, z)$ 

R3:  $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ 

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

Rule R1 is satisfied:

F4: *Faster*(*Titanic*, *Mistral*)

 $\leftarrow$ 

# Forward chaining example

KB: R1: Steamboat  $(x) \land Sailboat(y) \Rightarrow Faster(x, y)$ 

R2: Sailboat  $(y) \land RowBoat(z) \Rightarrow Faster(y, z)$ 

R3:  $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ 

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: *RowBoat(PondArrow)* 

#### Rule R1 is satisfied:

F4: Faster(Titanic, Mistral)

Rule R2 is satisfied:

F5: Faster(Mistral, PondArrow)

CS 1571 Intro to Al

M. Hauskrecht

# Forward chaining example

KB: R1: Steamboat  $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$ 

R2:  $Sailboat(y) \land RowBoat(z) \Rightarrow Faster(y, z)$ 

R3:  $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ 

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

#### Rule R1 is satisfied:

F4: Faster(Titanic, Mistral) 🛑

#### Rule R2 is satisfied:

F5: Faster(Mistral, PondArrow)

#### Rule R3 is satisfied:

F6: Faster(Titanic, PondArrow)



CS 1571 Intro to Al

# **Backward chaining example**

Backward chaining (goal reduction)

**Idea:** To prove the fact that appears in the conclusion of a rule prove the antecedents (if part) of the rule & repeat recursively.

KB: R1: Steamboat  $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$ 

R2:  $Sailboat(y) \land RowBoat(z) \Rightarrow Faster(y, z)$ 

R3:  $Faster(x, y) \land Faster(y, z) \Rightarrow Faster(x, z)$ 

F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

Theorem: Faster (Titanic, PondArrow)

CS 1571 Intro to Al

M. Hauskrecht

# **Backward chaining example**



F1: Steamboat (Titanic)

F2: Sailboat (Mistral)

F3: RowBoat(PondArrow)

X

Steamboat  $(x) \land Sailboat (y) \Rightarrow Faster (x, y)$ 

Faster (Titanic, PondArrow)

 $\{x \mid Titanic, y \mid PondArrow\}$ 

CS 1571 Intro to Al







