CS 1571 Introduction to AI Lecture 18

First-order logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Tic-tac-toe competition

Results:

- 1. Richard Matchett
- 2. Vinay Sarpeshkar
- 3. Brandon Blatnick

CS 1571 Intro to Al

First-order logic (FOL)

- More expressive than propositional logic
- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately

CS 1571 Intro to Al

M. Hauskrecht

Logic

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- The valuation (meaning) function V
 - Assigns a truth value to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

CS 1571 Intro to Al

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:

- Constant symbols: represent specific objects
 - E.g. John, France, car89
- **Variables:** represent objects of a certain type (type = domain of discourse)
 - E.g. x,y,z
- Functions applied to one or more terms
 - E.g. father-of (John)father-of(father-of(John))

CS 1571 Intro to Al

M. Hauskrecht

First order logic. Syntax.

Sentences in FOL:

- Atomic sentences:
 - A predicate symbol applied to 0 or more terms

Examples:

```
Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));
```

- t1 = t2 equivalence of terms

Example:

John = father-of(Peter)

CS 1571 Intro to Al

First order logic. Syntax.

Sentences in FOL:

- Complex sentences:
- Assume ϕ , ψ are sentences in FOL. Then:
 - $\quad (\phi \land \psi) \quad (\phi \lor \psi) \quad (\phi \Rightarrow \psi) \quad (\phi \Leftrightarrow \psi) \ \neg \psi$ and
 - $\quad \forall x \phi \qquad \exists y \phi$ are sentences

Symbols ∃, ∀

- stand for the existential and the universal quantifier

CS 1571 Intro to Al

M. Hauskrecht

Semantics. Interpretation.

An interpretation *I* is defined by a **mapping** to the **domain of discourse D or relations on D**

• **domain of discourse:** a set of objects in the world we represent and refer to;

An interpretation *I* maps:

- Constant symbols to objects in D I(John) =
- Predicate symbols to relations, properties on D

$$I(brother) = \left\{ \left\langle \stackrel{\frown}{\mathcal{X}} \stackrel{\frown}{\mathcal{X}} \right\rangle; \left\langle \stackrel{\frown}{\mathcal{X}} \stackrel{\frown}{\mathcal{Y}} \right\rangle; \dots \right\}$$

• Function symbols to functional relations on D

$$I(father-of) = \left\{ \left\langle \stackrel{\sim}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\sim}{\mathcal{T}} ; \left\langle \stackrel{\sim}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\sim}{\mathcal{T}} ; \dots \right\}$$

CS 1571 Intro to Al

Semantics of sentences.

Meaning (evaluation) function:

V: sentence \times interpretation $\rightarrow \{True, False\}$

A **predicate** *predicate*(*term-1*, *term-2*, *term-3*, *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, *term-3*, *term-n* are in the relation referred to by *predicate*

$$I(John) = \frac{?}{7} \qquad I(Paul) = \frac{?}{7}$$

$$I(brother) = \left\{ \left\langle \frac{?}{7}, \frac{?}{7} \right\rangle; \left\langle \frac{?}{7}, \frac{?}{7} \right\rangle; \dots \right\}$$

$$brother(John, Paul) = \left\langle \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow} \right\rangle$$
 in $I(brother)$

V(brother(John, Paul), I) = True

CS 1571 Intro to Al

M. Hauskrecht

Semantics of sentences.

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- Boolean expressions: standard

E.g.
$$V(sentence-1 \lor sentence-2, I) = True$$

Iff $V(sentence-1,I) = True$ or $V(sentence-2,I) = True$

Quantifications

$$V(\forall x \ \phi, I) = \textbf{True}$$
 substitution of x with d

Iff for all $d \in D$ $V(\phi, I[x/d]) = \textbf{True}$
 $V(\exists x \ \phi, I) = \textbf{True}$

Iff there is a $d \in D$, s.t. $V(\phi, I[x/d]) = \textbf{True}$

CS 1571 Intro to Al

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John, Mary, Jane, ...

• Properties: gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• Functions: mother-of (one for each person x)

MotherOf(x)

CS 1571 Intro to Al

M. Hauskrecht

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

· Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

· A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

And so on

CS 1571 Intro to Al

Inference in First order logic

CS 1571 Intro to Al

M. Hauskrecht

Logical inference in FOL

Logical inference problem:

• Given a knowledge base KB (a set of sentences) and a sentence α , does the KB semantically entail α ?

$$KB \models \alpha$$
 ?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Logical inference problem in the first-order logic is undecidable !!!. No procedure that can decide the entailment for all possible input sentences in a finite number of steps.

CS 1571 Intro to Al

Logical inference problem in the Propositional logic

Computational procedures that answer:

$$KB = \alpha$$
?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to Al

M. Hauskrecht

Inference in FOL: Truth table

• Is the Truth-table approach a viable approach for the FOL?

?

CS 1571 Intro to Al

Inference in FOL: Truth table approach

- Is the Truth-table approach a viable approach for the FOL?
 ?
- NO!
- Why?
- It would require us to enumerate and list all possible interpretations I
- I = (assignments of symbols to objects, predicates to relations and functions to relational mappings)
- Simply there are too many interpretations

CS 1571 Intro to Al

M. Hauskrecht

Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?

9

CS 1571 Intro to Al

Inference in FOL: Inference rules

- Is the Inference rule approach a viable approach for the FOL??
- · Yes.
- The inference rules represent sound inference patterns one can apply to sentences in the KB
- What is derived follows from the KB
- · Caveat: we need to add rules for handling quantifiers

CS 1571 Intro to Al

M. Hauskrecht

Inference rules

- Inference rules from the propositional logic:
 - Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

- Resolution

$$\frac{A \vee B, \quad \neg B \vee C}{A \vee C}$$

- and others: And-introduction, And-elimination, Orintroduction, Negation elimination
- Additional inference rules are needed for sentences with quantifiers and variables
 - Must involve variable substitutions

CS 1571 Intro to Al

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - Bound if it is in the scope of some quantifier

$$\forall x P(x)$$

- Free - if it is not bound.

$$\exists x \ P(y) \land Q(x)$$
 y is free

Examples:

$$\forall x \exists y \ Likes (x, y)$$

• Bound or free?

CS 1571 Intro to Al

M. Hauskrecht

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - **Bound** if it is in the scope of some quantifier
 - Free if it is not bound.

$$\exists x \ P(y) \land Q(x)$$
 y is free

Examples:

$$\forall x \; \exists y \; Likes \; (x,y)$$

Bound

$$\forall x (Likes(x, y) \land \exists y \ Likes(y, Raymond))$$

• Bound or free?

CS 1571 Intro to Al

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
 - **Bound** if it is in the scope of some quantifier
 - $\forall x \ P(x)$ Free if it is not bound.

$$\exists x \ P(y) \land Q(x)$$
 y is free

Examples:

$$\forall x \; \exists y \; Likes \; (x,y)$$

• Bound

$$\forall x (Likes(x, y) \land \exists y \ Likes(y, Raymond))$$

• Free

CS 1571 Intro to Al

M. Hauskrecht

Sentences with variables

First-order logic sentences can include variables.

- Sentence (formula) is:
 - Closed if it has no free variables

$$\forall y \exists x \ P(y) \Rightarrow Q(x)$$

- Open - if it is not closed

$$\exists x \ P(y) \land Q(x)$$
 y is free

Ground – if it does not have any variables

CS 1571 Intro to Al

Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)
- Substitution:
 - Is represented by a mapping from variables to terms $\{x_1/t_1, x_2/t_2, ...\}$
 - Application of the substitution to sentences

$$SUBST(\{x \mid Sam, y \mid Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$

 $SUBST(\{x \mid z, y \mid fatherof(John)\}, Likes(x, y)) = ?$

CS 1571 Intro to Al

M. Hauskrecht

Variable substitutions

- Variables in the sentences can be substituted with terms.
 (terms = constants, variables, functions)
- Substitution:
 - Is represented by a mapping from variables to terms $\{x_1/t_1, x_2/t_2, ...\}$
 - Application of the substitution to sentences

$$SUBST(\{x \mid Sam, y \mid Pam\}, Likes(x, y)) = Likes(Sam, Pam)$$

 $SUBST(\{x \mid z, y \mid fatherof(John)\}, Likes(x, y)) =$
 $Likes(z, fatherof(John))$

CS 1571 Intro to Al

Inference rules for quantifiers

• Universal elimination

$$\frac{\forall x \ \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

substitutes a variable with a constant symbol

 $\forall x \ Likes(x, IceCream)$ Likes(Ben, IceCream)

• Existential elimination.

$$\frac{\exists x \; \phi(x)}{\phi(a)}$$

 Substitutes a variable with a constant symbol that does not appear elsewhere in the KB

$$\exists x \ Kill(x, Victim)$$
 $Kill(Murderer, Victim)$

CS 1571 Intro to Al

M. Hauskrecht

Inference rules for quantifiers

• Universal instantiation (introduction)

$$\frac{\phi}{\forall x \ \phi}$$
 $x - \text{is not free in } \phi$

– Introduces a universal variable which does not affect ϕ or its assumptions

$$Sister(Amy, Jane)$$
 $\forall x Sister(Amy, Jane)$

• Existential instantiation (introduction)

$$\frac{\phi(a)}{\exists x \phi(x)} \qquad a - \text{is a ground term in } \phi$$
$$x - \text{is not free in } \phi$$

 Substitutes a ground term in the sentence with a variable and an existential statement

$$Likes(Ben, IceCream)$$
 $\exists x \ Likes(x, IceCream)$

CS 1571 Intro to Al

Unification

• **Problem in inference:** Universal elimination gives many opportunities for substituting variables with ground terms

$$\frac{\forall x \ \phi(x)}{\phi(a)} \qquad a \text{ - is a constant symbol}$$

- Solution: Try substitutions that may help
 - Use substitutions of "similar" sentences in KB
- Unification takes two similar sentences and computes the substitution that makes them look the same, if it exists

UNIFY
$$(p,q) = \sigma$$
 s.t. SUBST $(\sigma, p) = SUBST(\sigma, q)$

CS 1571 Intro to Al

M. Hauskrecht

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma \text{ s.t. } SUBST(\sigma,p) = SUBST(\sigma,q)$$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = ?$

CS 1571 Intro to Al

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= ?$

CS 1571 Intro to Al

M. Hauskrecht

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma, p) = SUBST(\sigma, q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x / Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x / Ann, y / John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= \{x / MotherOf(John), y / John\}$
 $UNIFY(Knows(John, x), Knows(x, Elizabeth)) = ?$

CS 1571 Intro to Al

Unification. Examples.

• Unification:

$$UNIFY(p,q) = \sigma$$
 s.t. $SUBST(\sigma,p) = SUBST(\sigma,q)$

• Examples:

$$UNIFY(Knows(John, x), Knows(John, Jane)) = \{x/Jane\}$$
 $UNIFY(Knows(John, x), Knows(y, Ann)) = \{x/Ann, y/John\}$
 $UNIFY(Knows(John, x), Knows(y, MotherOf(y)))$
 $= \{x/MotherOf(John), y/John\}$

UNIFY(Knows(John, x), Knows(x, Elizabeth)) = fail

CS 1571 Intro to Al

M. Hauskrecht

Generalized inference rules.

• Use substitutions that let us make inferences

Example: Modus Ponens

• If there exists a substitution σ such that

SUBST
$$(\sigma, A_i) = SUBST(\sigma, A_i')$$
 for all i=1,2, n

$$\frac{A_1 \wedge A_2 \wedge \dots A_n \Rightarrow B, \quad A_1', A_2', \dots A_n'}{SUBST(\sigma, B)}$$

- Substitution that satisfies the generalized inference rule can be build via unification process
- Advantage of the generalized rules: they are focused
 - only substitutions that allow the inferences to proceed

CS 1571 Intro to Al

Resolution inference rule

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\begin{split} \sigma &= UNIFY \; (\phi_i, \neg \psi_j) \neq \; fail \\ \frac{\phi_1 \lor \phi_2 \ldots \lor \phi_k, \quad \psi_1 \lor \psi_2 \lor \ldots \psi_n}{SUBST(\sigma, \phi_1 \lor \ldots \lor \phi_{i-1} \lor \phi_{i+1} \ldots \lor \phi_k \lor \psi_1 \lor \ldots \lor \psi_{j-1} \lor \psi_{j+1} \ldots \psi_n)} \end{split}$$

Example: $P(x) \lor Q(x), \neg Q(John) \lor S(y)$ $P(John) \lor S(y)$

CS 1571 Intro to Al

M. Hauskrecht

Resolution inference rule

• **Recall:** Resolution inference rule is sound and complete (refutation-complete) for the **propositional logic** and CNF

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

• Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$\sigma = UNIFY \ (\phi_{i}, \neg \psi_{j}) \neq fail$$

$$\frac{\phi_{1} \lor \phi_{2} \dots \lor \phi_{k}, \quad \psi_{1} \lor \psi_{2} \lor \dots \psi_{n}}{SUBST(\sigma, \phi_{1} \lor \dots \lor \phi_{i-1} \lor \phi_{i+1} \dots \lor \phi_{k} \lor \psi_{1} \lor \dots \lor \psi_{j-1} \lor \psi_{j+1} \dots \psi_{n})}$$

Example: $P(x) \lor Q(x), \neg Q(John) \lor S(y)$

CS 1571 Intro to Al