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First-order logic (FOL)

• More expressive than propositional logic

• Eliminates  deficiencies of PL by:
– Representing objects, their properties, relations and 

statements about them;
– Introducing variables that refer to an arbitrary objects and 

can be substituted by a specific object
– Introducing quantifiers allowing us to make statements 

over groups objects without the need to represent each of 
them separately  
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Logic
Logic is defined by:
• A set of sentences

– A sentence is constructed from a set of primitives according 
to syntax rules.

• A set of interpretations
– An interpretation gives a semantic to primitives. It associates 

primitives with objects, values in the real world.
• The valuation (meaning) function V

– Assigns a truth value to a given  sentence under some 
interpretation

interpretasentence: ×V },{tion FalseTrue→
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First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:
• Constant symbols: represent specific objects

– E.g. John, France, car89
• Variables: represent objects of a certain type (type = domain of 

discourse)
– E.g. x,y,z

• Functions applied to one or more terms
– E.g. father-of (John)

father-of(father-of(John))
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First order logic. Syntax.

Sentences in FOL:
• Atomic sentences:

– A predicate symbol applied to 0 or more terms
Examples:
Red(car12), 
Sister(Amy, Jane);
Manager(father-of(John));

– t1 = t2  equivalence of terms
Example:
John = father-of(Peter)
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First order logic. Syntax.

Sentences in FOL:
• Complex sentences:
• Assume           are sentences in FOL. Then:

–
and

–
are sentences        

Symbols
- stand for the existential and the universal quantifier

)( ψφ ∧ )( ψφ ∨ ψ¬)( ψφ ⇔)( ψφ ⇒
ψφ ,

φx∀ φy∃

∀∃,

CS 1571 Intro to AI M. Hauskrecht

Semantics. Interpretation. 
An interpretation  I is defined by a mapping to the domain of 

discourse D or relations on D
• domain of discourse: a set of objects in the world we represent 

and refer to; 
An interpretation I maps:
• Constant symbols to objects in D

I(John) = 
• Predicate symbols to relations, properties on D

• Function symbols to functional relations on D 

; ; ….

; ; ….

I(brother) =

I(father-of) =
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Semantics of sentences. 
Meaning (evaluation) function:

A predicate predicate(term-1, term-2, term-3, term-n) is true for 
the interpretation I , iff the objects referred to by term-1, term-
2, term-3, term-n are in the relation referred to by predicate

interpretasentence: ×V },{tion FalseTrue→

V(brother(John, Paul), I) = True

; ; ….I(brother) =

I(John) = I(Paul) =

brother(John, Paul) = in I(brother)
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Semantics of sentences.

• Equality

• Boolean expressions: standard

• Quantifications

V(term-1= term-2, I) = True
Iff I(term-1) =I(term-2)

V(sentence-1  ∨ sentence-2, I) = True
Iff V(sentence-1,I)= True or V(sentence-2,I)= True

E.g.

V(           , I) = True
Iff for all               V( ,I[x/d])= True
φx∀

Dd ∈ φ

V(           , I) = True
Iff there is a                , s.t.   V( ,I[x/d])= True
φx∃

Dd ∈ φ

substitution of x with d
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Representing knowledge in FOL
Example: 

Kinship domain

• Objects: people

• Properties: gender

• Relations: parenthood, brotherhood, marriage

• Functions: mother-of (one for each person x)

)(),( xFemalexMale

),(),,(),,( yxSpouseyxBrotheryxParent

)( xMotherOf

K,,, JaneMaryJohn
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Kinship domain in FOL

Relations between predicates and functions: write down what 
we know about them; how relate to each other.

• Male and female are disjoint categories

• Parent and child relations are inverse

• A grandparent is a parent of parent

• A sibling is another child of one’s parents

• And so on ….

),(),(),(, cpParentpgParentpcgtGrandparencg ∧∃⇔∀

),(),()(),(, ypParentxpParentpyxyxSiblingyx ∧∃∧≠⇔∀

),(),(, xyChildyxParentyx ⇔∀

)()( xFemalexMalex ¬⇔∀
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Inference in First order logic
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Logical inference in FOL

Logical inference problem:
• Given a knowledge base KB (a set of sentences) and a 

sentence     , does the KB semantically entail     ?

In other words:  In all interpretations in which sentences in the 
KB are true, is also     true?

Logical inference problem in the first-order logic is 
undecidable !!!. No procedure that can decide the entailment 
for all possible input sentences in a finite number of steps.

α=|KB ?

α

αα
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Logical inference problem in the Propositional 
logic

Computational procedures that answer: 

Three approaches:
• Truth-table approach
• Inference rules
• Conversion to the inverse SAT problem

– Resolution-refutation 

α=|KB ?
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Inference in FOL: Truth table

• Is the Truth-table approach a viable approach for the FOL?

?
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Inference in FOL: Truth table approach

• Is the Truth-table approach a viable approach for the FOL?

• NO! 
• Why? 
• It would require us to enumerate and list all possible 

interpretations I
• I = (assignments of symbols to objects, predicates to relations 

and functions to relational mappings)
• Simply there are too many interpretations

?
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Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?

?
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Inference in FOL: Inference rules

• Is the Inference rule approach a viable approach for the FOL?

• Yes. 
• The inference rules represent sound inference patterns one can 

apply to sentences in the KB
• What is derived follows from the KB
• Caveat: we need to add rules for handling quantifiers

?
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Inference rules

• Inference rules from the propositional logic:
– Modus ponens

– Resolution

– and others: And-introduction, And-elimination, Or-
introduction, Negation elimination

• Additional inference rules are needed for sentences with 
quantifiers and variables
– Must involve variable substitutions

B
ABA ,⇒

CA
CBBA

∨
∨¬∨ ,
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Sentences with variables
First-order logic sentences can include variables.
• Variable is:

– Bound – if it is in the scope of some quantifier

– Free – if it is not bound.

Examples:

• Bound or free?   

)(xPx∀

)()( xQyPx ∧∃ y is free

),( yxLikesyx ∃∀
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Sentences with variables
First-order logic sentences can include variables.
• Variable is:

– Bound – if it is in the scope of some quantifier

– Free – if it is not bound.

Examples:

• Bound 

• Bound or free?  

)(xPx∀

)()( xQyPx ∧∃ y is free

),( yxLikesyx ∃∀

( )),(),( RaymondyLikesyyxLikesx ∃∧∀
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Sentences with variables
First-order logic sentences can include variables.
• Variable is:

– Bound – if it is in the scope of some quantifier

– Free – if it is not bound.

Examples:

• Bound 

• Free  

)(xPx∀

)()( xQyPx ∧∃ y is free

),( yxLikesyx ∃∀

( )),(),( RaymondyLikesyyxLikesx ∃∧∀
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Sentences with variables
First-order logic sentences can include variables.
• Sentence (formula) is:

– Closed – if it has no free variables

– Open – if it is not closed

– Ground – if it does not have any variables

),( JaneJohnLikes

)()( xQyPx ∧∃ y is free

)()( xQyPxy ⇒∃∀
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Variable substitutions

• Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)

• Substitution:
– Is represented by a mapping from variables to terms

– Application of the substitution to sentences

},/,/{ 2211 Ktxtx

),()),(},/,/({ PamSamLikesyxLikesPamySamxSUBST =

?)),()},(/,/({ =yxLikesJohnfatherofyzxSUBST
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Variable substitutions

• Variables in the sentences can be substituted with terms.
(terms = constants, variables, functions)

• Substitution:
– Is represented by a mapping from variables to terms

– Application of the substitution to sentences

},/,/{ 2211 Ktxtx

),()),(},/,/({ PamSamLikesyxLikesPamySamxSUBST =

))(,(
)),()},(/,/({

JohnfatherofzLikes
yxLikesJohnfatherofyzxSUBST =
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Inference rules for quantifiers

• Universal elimination

– substitutes a variable with a constant symbol

• Existential elimination.

– Substitutes a variable with a constant symbol that does not 
appear elsewhere in the KB

)(
)(

a
xx

φ
φ∃

)(
)(

a
xx

φ
φ∀

a - is a constant symbol

),( IceCreamxLikesx∀ ),( IceCreamBenLikes

),( VictimxKillx∃ ),( VictimMurdererKill
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Inference rules for quantifiers

• Universal instantiation (introduction)

– Introduces a universal variable which does not affect     or 
its assumptions

• Existential instantiation (introduction)

– Substitutes a ground term in the sentence with a variable 
and an existential statement

)(
)(
xx

a
φ
φ

∃

φ
φ
x∀

x – is not free in φ

a – is a ground term in
x – is not free in 

φ
φ

φ

),( IceCreamxLikesx∃),( IceCreamBenLikes

),( JaneAmySister ),( JaneAmySisterx∀
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Unification

• Problem in inference: Universal elimination gives many 
opportunities for  substituting variables with ground terms

• Solution: Try substitutions that may help
– Use substitutions of  “similar” sentences in KB 

• Unification – takes two similar sentences and computes the 
substitution that makes them look the same, if it exists

),(), s.t. ),( qSUBSTpSUBST( σqpUNIFY σσ ==

)(
)(

a
xx

φ
φ∀

a - is a constant symbol

CS 1571 Intro to AI M. Hauskrecht

Unification. Examples.

• Unification:

• Examples:

}/{)),(),,(( JanexJaneJohnKnowsxJohnKnowsUNIFY =

?)),(),,(( =AnnyKnowsxJohnKnowsUNIFY

),(), s.t. ),( qSUBSTpSUBST( σqpUNIFY σσ ==
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Unification. Examples.

• Unification:

• Examples:

}/{)),(),,(( JanexJaneJohnKnowsxJohnKnowsUNIFY =

}/,/{)),(),,(( JohnyAnnxAnnyKnowsxJohnKnowsUNIFY =

?                            
)))(,(),,((

=
yMotherOfyKnowsxJohnKnowsUNIFY

),(), s.t. ),( qSUBSTpSUBST( σqpUNIFY σσ ==
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Unification. Examples.

• Unification:

• Examples:

}/{)),(),,(( JanexJaneJohnKnowsxJohnKnowsUNIFY =

}/,/{)),(),,(( JohnyAnnxAnnyKnowsxJohnKnowsUNIFY =

?)),(),,(( =ElizabethxKnowsxJohnKnowsUNIFY

}/),(/{                            
)))(,(),,((

JohnyJohnMotherOfx
yMotherOfyKnowsxJohnKnowsUNIFY

=

),(), s.t. ),( qSUBSTpSUBST( σqpUNIFY σσ ==
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Unification. Examples.

• Unification:

• Examples:

}/{)),(),,(( JanexJaneJohnKnowsxJohnKnowsUNIFY =

}/,/{)),(),,(( JohnyAnnxAnnyKnowsxJohnKnowsUNIFY =

failElizabethxKnowsxJohnKnowsUNIFY =)),(),,((

}/),(/{                            
)))(,(),,((

JohnyJohnMotherOfx
yMotherOfyKnowsxJohnKnowsUNIFY

=

),(), s.t. ),( qSUBSTpSUBST( σqpUNIFY σσ ==

CS 1571 Intro to AI M. Hauskrecht

Generalized inference rules.

• Use substitutions that let us make inferences
Example: Modus Ponens
• If there exists a substitution       such that

• Substitution that satisfies the generalized inference rule can be 
build via unification process

• Advantage of the generalized rules: they are focused
– only substitutions that allow the inferences to proceed 

),(
',',', 2121

BSUBST
AAABAAA nn

σ
KK ⇒∧∧

)',(),( ii ASUBSTASUBST σσ =

σ

for all i=1,2, n



18

CS 1571 Intro to AI M. Hauskrecht

Resolution inference rule
• Recall: Resolution inference rule is sound and complete 

(refutation-complete) for the propositional logic and CNF

• Generalized resolution rule is sound and refutation complete
for the first-order logic and CNF w/o equalities (if unsatisfiable
the resolution will find the contradiction)

CB
CABA

∨
∨¬∨ ,

),(
,

111111

2121

njjkii

nk

SUBST ψψψψφφφφσ
ψψψφφφ

KKKK

KK

+−+− ∨∨∨∨∨∨∨∨
∨∨∨∨

failUNIFY ji ≠¬= ),( ψφσ

Example:
)()(

)()(),()(
ySJohnP

ySJohnQxQxP
∨

∨¬∨
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Resolution inference rule
• Recall: Resolution inference rule is sound and complete 

(refutation-complete) for the propositional logic and CNF

• Generalized resolution rule is sound and refutation complete
for the first-order logic and CNF w/o equalities (if unsatisfiable
the resolution will find the contradiction)

CB
CABA

∨
∨¬∨ ,

),(
,

111111

2121

njjkii

nk

SUBST ψψψψφφφφσ
ψψψφφφ

KKKK

KK

+−+− ∨∨∨∨∨∨∨∨
∨∨∨∨

failUNIFY ji ≠¬= ),( ψφσ

Example:
?

)()(),()( ySJohnQxQxP ∨¬∨


