CS 1571 Introduction to AI Lecture 17

First-order logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing competition

Results:

- Baer, Joshua R
- Miller, Michael P
- Matchett, Richard J

CS 1571 Intro to Al

Limitations of propositional logic

World we want to represent and reason about consists of a number of objects with variety of properties and relations among them

Propositional logic:

• Represents statements about the world without reflecting this structure and without modeling these entities explicitly

Consequence:

- some knowledge is hard or impossible to encode in the propositional logic.
- Two cases that are hard to represent:
 - Statements about similar objects, relations
 - Statements referring to groups of objects.

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

Assume we have: John is older than Mary

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \wedge Mary is older than Paul \Rightarrow John is older than Paul

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary \land Mary is older than Paul \Rightarrow Jane is older than Paul

What is the problem?

CS 1571 Intro to Al

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

Assume we have: John is older than Mary

Mary is older than Paul

To derive *John is older than Paul* we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow John is older than Paul

Assume we add another fact: Jane is older than Mary

To derive *Jane is older than Paul* we need:

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

Problem: KB grows large

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary \wedge Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

- \Rightarrow Jane is older than Paul
- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: ??

Limitations of propositional logic

- Statements about similar objects and relations needs to be enumerated
- Example: Seniority of people domain

For inferences we need:

John is older than Mary A Mary is older than Paul

 \Rightarrow John is older than Paul

Jane is older than Mary ∧ Mary is older than Paul

 \Rightarrow Jane is older than Paul

- **Problem:** if we have many people and facts about their seniority we need represent many rules like this to allow inferences
- Possible solution: introduce variables

<u>PersA</u> is older than <u>PersB</u> \land <u>PersB</u> is older than <u>PersC</u>

 \Rightarrow **PersA** is older than **PersC**

CS 1571 Intro to Al

M. Hauskrecht

Limitations of propositional logic

- Statements referring to groups of objects require exhaustive enumeration of objects
- Example:

Assume we want to express Every student likes vacation

Doing this in propositional logic would require to include statements about every student

John likes vacation ∧

Mary likes vacation ∧

Ann likes vacation

. . .

Solution: Allow quantification in statements

CS 1571 Intro to Al

First-order logic (FOL)

- More expressive than propositional logic
- Eliminates deficiencies of PL by:
 - Representing objects, their properties, relations and statements about them;
 - Introducing variables that refer to an arbitrary objects and can be substituted by a specific object
 - Introducing quantifiers allowing us to make statements over groups objects without the need to represent each of them separately

CS 1571 Intro to Al

M. Hauskrecht

Logic

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with objects, values in the real world.
- The valuation (meaning) function V
 - Assigns a truth value to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

CS 1571 Intro to Al

First-order logic. Syntax.

Term - syntactic entity for representing objects

Terms in FOL:

- Constant symbols: represent specific objects
 - E.g. John, France, car89
- **Variables:** represent objects of a certain type (type = domain of discourse)
 - E.g. x,y,z
- Functions applied to one or more terms
 - E.g. father-of (John)father-of(father-of(John))

CS 1571 Intro to Al

M. Hauskrecht

First order logic. Syntax.

Sentences in FOL:

- Atomic sentences:
 - A predicate symbol applied to 0 or more terms

Examples:

```
Red(car12),
Sister(Amy, Jane);
Manager(father-of(John));
```

- t1 = t2 equivalence of terms

Example:

John = father-of(Peter)

CS 1571 Intro to Al

First order logic. Syntax.

Sentences in FOL:

- Complex sentences:
- Assume ϕ , ψ are sentences in FOL. Then:
 - $\quad (\phi \land \psi) \quad (\phi \lor \psi) \quad (\phi \Rightarrow \psi) \quad (\phi \Leftrightarrow \psi) \ \neg \psi$ and
 - $\quad \forall x \phi \qquad \exists y \phi$ are sentences

Symbols ∃, ∀

- stand for the existential and the universal quantifier

CS 1571 Intro to Al

M. Hauskrecht

Semantics. Interpretation.

An interpretation *I* is defined by a **mapping** to the **domain of discourse D or relations on D**

• **domain of discourse:** a set of objects in the world we represent and refer to;

An interpretation *I* maps:

- Constant symbols to objects in D I(John) =
- Predicate symbols to relations, properties on D

$$I(brother) = \left\{ \left\langle \stackrel{\frown}{\mathcal{X}} \stackrel{\frown}{\mathcal{X}} \right\rangle; \left\langle \stackrel{\frown}{\mathcal{X}} \stackrel{\frown}{\mathcal{Y}} \right\rangle; \dots \right\}$$

• Function symbols to functional relations on D

$$I(father-of) = \left\{ \left\langle \stackrel{\sim}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\sim}{\mathcal{T}} ; \left\langle \stackrel{\sim}{\mathcal{T}} \right\rangle \rightarrow \stackrel{\sim}{\mathcal{T}} ; \dots \right\}$$

CS 1571 Intro to Al

Semantics of sentences.

Meaning (evaluation) function:

V: sentence \times interpretation \rightarrow {True, False}

A **predicate** *predicate*(*term-1*, *term-2*, *term-3*, *term-n*) is true for the interpretation *I*, iff the objects referred to by *term-1*, *term-2*, *term-3*, *term-n* are in the relation referred to by *predicate*

$$I(John) = \frac{?}{7} \qquad I(Paul) = \frac{?}{7}$$

$$I(brother) = \left\{ \left\langle \frac{?}{7}, \frac{?}{7} \right\rangle; \left\langle \frac{?}{7}, \frac{?}{7} \right\rangle; \dots \right\}$$

$$brother(John, Paul) = \left\langle \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow} \right\rangle$$
 in $I(brother)$

V(brother(John, Paul), I) = True

CS 1571 Intro to Al

M. Hauskrecht

Semantics of sentences.

- Equality V(term-1 = term-2, I) = TrueIff I(term-1) = I(term-2)
- Boolean expressions: standard

E.g.
$$V(sentence-1 \lor sentence-2, I) = True$$

Iff $V(sentence-1,I) = True$ or $V(sentence-2,I) = True$

Quantifications

$$V(\forall x \ \phi, I) = \textbf{True}$$
 substitution of x with d

Iff for all $d \in D$ $V(\phi, I[x/d]) = \textbf{True}$
 $V(\exists x \ \phi, I) = \textbf{True}$

Iff there is a $d \in D$, s.t. $V(\phi, I[x/d]) = \textbf{True}$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Universal quantification

All Upitt students are smart

• Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

 $\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$

CS 1571 Intro to Al

• Universal quantification

All Upitt students are smart

Assume the universe of discourse of x are Upitt students

 $\forall x \ smart(x)$

• Assume the universe of discourse of x are students

 $\forall x \ at(x, Upitt) \Rightarrow smart(x)$

• Assume the universe of discourse of x are people

 $\forall x \ student(x) \land at(x, Upitt) \Rightarrow smart(x)$

Typically the universal quantifier connects with an implication

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

Existential quantification

Someone at CMU is smart

Assume the universe of discourse of x are CMU affiliates

CS 1571 Intro to Al

• Existential quantification

Someone at CMU is smart

Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

CS 1571 Intro to Al

• Existential quantification

Someone at CMU is smart

Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

 $\exists x \ at(x, CMU) \land smart(x)$

CS 1571 Intro to Al

M. Hauskrecht

Sentences with quantifiers

• Existential quantification

Someone at CMU is smart

• Assume the universe of discourse of x are CMU affiliates

 $\exists x \ smart(x)$

• Assume the universe of discourse of x are people

 $\exists x \ at(x, CMU) \land smart(x)$

Typically the existential quantifier connects with a conjunction

CS 1571 Intro to Al

Translation with quantifiers

• Assume two predicates S(x) and P(x)

Universal statements typically tie with implications

- All S(x) is P(x)
 - $\forall x (S(x) \rightarrow P(x))$
- No S(x) is P(x)
 - $\forall x (S(x) \rightarrow \neg P(x))$

Existential statements typically tie with conjunction

- Some S(x) is P(x)
 - $-\exists x (S(x) \land P(x))$
- Some S(x) is not P(x)
 - $-\exists x (S(x) \land \neg P(x))$

CS 1571 Intro to Al

M. Hauskrecht

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

?

CS 1571 Intro to Al

Nested quantifiers

• More than one quantifier may be necessary to capture the meaning of a statement in the predicate logic.

Example:

- There is a person who loves everybody.
- Translation:
 - Assume:
 - Variables x and y denote people
 - A predicate L(x,y) denotes: "x loves y"
- Then we can write in the predicate logic:

 $\exists x \forall y L(x,y)$

CS 1571 Intro to Al

M. Hauskrecht

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

• Everybody loves Raymond.

9

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x L(x,Raymond)$
- Everybody loves somebody.

CS 1571 Intro to Al

M. Hauskrecht

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

• Everybody loves Raymond. $\forall x L(x,Raymond)$

• Everybody loves somebody. $\forall x \exists y \ L(x,y)$

• There is somebody whom everybody loves. ?

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x \ L(x,Raymond)$
- Everybody loves somebody. $\forall x \exists y L(x,y)$
- There is somebody whom everybody loves. $\exists y \forall x \ L(x,y)$
- There is somebody who Raymond doesn't love. ?

CS 1571 Intro to Al

M. Hauskrecht

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

• Everybody loves Raymond. $\forall x L(x,Raymond)$

• Everybody loves somebody. $\forall x \exists y \ L(x,y)$

• There is somebody whom everybody loves. $\exists y \forall x \ L(x,y)$

• There is somebody who Raymond doesn't love.

 $\exists y \neg L(Raymond, y)$

• There is somebody whom no one loves.

CS 1571 Intro to Al

Translation exercise

Suppose:

- Variables x,y denote people
- L(x,y) denotes "x loves y".

Translate:

- Everybody loves Raymond. $\forall x L(x,Raymond)$
- Everybody loves somebody. $\forall x \exists y L(x,y)$
- There is somebody whom everybody loves. $\exists y \forall x \ L(x,y)$
- There is somebody who Raymond doesn't love. ∃y¬L(Raymond,y)
- There is somebody whom no one loves.

$$\exists y \ \forall x \ \neg L(x,y)$$

CS 1571 Intro to Al

M. Hauskrecht

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x

$$\forall x, y \ parent \ (x, y) \Rightarrow child \ (y, x)$$

$$\forall y, x \ parent \ (x, y) \Rightarrow child \ (y, x)$$

• Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

CS 1571 Intro to AI M. Hauskrecht

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x $\forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$ $\forall y, x \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$
Everybody loves somebody
$$\exists y \forall x \ loves \ (x, y)$$

CS 1571 Intro to Al

M. Hauskrecht

Order of quantifiers

• Order of quantifiers of the same type does not matter

For all x and y, if x is a parent of y then y is a child of x $\forall x, y \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$ $\forall y, x \text{ parent } (x, y) \Rightarrow \text{child } (y, x)$

· Order of different quantifiers changes the meaning

$$\forall x \exists y \ loves \ (x, y)$$

Everybody loves somebody
$$\exists y \forall x \ loves \ (x, y)$$

There is someone who is loved by everyone

CS 1571 Intro to Al

Everyone likes ice cream ?

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Everyone likes ice cream

 $\forall x \ likes \ (x, IceCream)$

CS 1571 Intro to Al

Everyone likes ice cream

```
\forall x \ likes \ (x, IceCream)
```

Is it possible to convey the same meaning using an existential quantifier?

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Everyone likes ice cream

```
\forall x \ likes (x, IceCream)
```

Is it possible to convey the same meaning using an existential quantifier?

There is no one who does not like ice cream

```
\neg \exists x \neg likes (x, IceCream)
```

A universal quantifier in the sentence can be expressed using an existential quantifier !!!

CS 1571 Intro to Al

Someone likes ice cream ?

CS 1571 Intro to Al

M. Hauskrecht

Connections between quantifiers

Someone likes ice cream

 $\exists x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using a universal quantifier?

CS 1571 Intro to Al

Someone likes ice cream

 $\exists x \ likes \ (x, IceCream)$

Is it possible to convey the same meaning using a universal quantifier?

Not everyone does not like ice cream

 $\neg \forall x \neg likes (x, IceCream)$

An existential quantifier in the sentence can be expressed using a universal quantifier !!!

CS 1571 Intro to Al

M. Hauskrecht

Representing knowledge in FOL

Example:

Kinship domain

• Objects: people

John , Mary , Jane , ...

• Properties: gender

Male(x), Female(x)

• Relations: parenthood, brotherhood, marriage

Parent (x, y), Brother (x, y), Spouse (x, y)

• **Functions:** mother-of (one for each person x)

Mother Of(x)

CS 1571 Intro to Al

Kinship domain in FOL

Relations between predicates and functions: write down what we know about them; how relate to each other.

• Male and female are disjoint categories

$$\forall x \; Male \; (x) \Leftrightarrow \neg Female \; (x)$$

• Parent and child relations are inverse

$$\forall x, y \ Parent \ (x, y) \Leftrightarrow Child \ (y, x)$$

• A grandparent is a parent of parent

$$\forall g, c \ Grandparent(g, c) \Leftrightarrow \exists p \ Parent(g, p) \land Parent(p, c)$$

• A sibling is another child of one's parents

$$\forall x, y \; Sibling \; (x, y) \Leftrightarrow (x \neq y) \land \exists p \; Parent \; (p, x) \land Parent \; (p, y)$$

• And so on

CS 1571 Intro to Al