CS 1571 Introduction to AI Lecture 16

Propositional logic.

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Logical inference problem

Logical inference problem:

- · Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB \models \alpha$ In other words: In all interpretations in which sentences in the KB are true, is also α true?

Approaches:

- Truth-table approach
- Inference rules
- Conversion to SAT
 - Resolution refutation

CS 1571 Intro to Al

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth tables:

• enumerate truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols) and check

Example:

		KB		α	
P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \vee \neg Q) \wedge Q$	2
True	True	True	True	True	■ ✓
True	False		False	False	
False	True	True	False	False	
False	False	False	True	False	

CS 1571 Intro to Al

M. Hauskrecht

Inference rules approach.

Motivation: we do not want to blindly generate and check all interpretations !!!

Inference rules:

- Represent sound inference patterns repeated in inferences
- Application of many inference rules allows us to infer new sound conclusions and hence prove theorems
- An example of an inference rule: Modus ponens

$$A \Rightarrow B$$
, A premise conclusion

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*

From 1 and And-elim

5. R

From 2,4 and Modus ponens

6. Q

From 1 and And-elim

7. $(Q \wedge R)$

From 5,6 and And-introduction

8.

From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*

From 1 and And-elim

5. R

From 2,4 and Modus ponens

Nondeterministic steps

6. Q

From 1 and And-elim

7. $(Q \wedge R)$

From 5,6 and And-introduction

8. *S*

From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to Al

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- Initial state: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

CS 1571 Intro to Al

M. Hauskrecht

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (P, R, T, S)
 - Values: *True*, *False*
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- All techniques developed for CSPs can be applied to solve the logical inference problem. Why?

Inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem (Simulated-annealing, WALKSAT)

CS 1571 Intro to Al

M. Hauskrecht

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (i.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (P, R, T, S)
 - Values: *True*, *False*
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- Why is this important? All techniques developed for CSPs can be applied to solve the logical inference problem!!

CS 1571 Intro to Al

Resolution algorithm

Algorithm:

- 1. Convert KB to the CNF form;
- **2. Apply iteratively the resolution rule** starting from KB, $\neg \alpha$ (in the CNF form)
- 3. Stop when:
 - Contradiction (empty clause) is reached:
 - $A, \neg A \rightarrow \emptyset$
 - proves the entailment.
 - No more new sentences can be derived
 - Rejects (disproves) the entailment.

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

CS 1571 Intro to Al

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

KB:
$$P Q (\neg P \lor R) (\neg Q \lor \neg R \lor S)$$

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

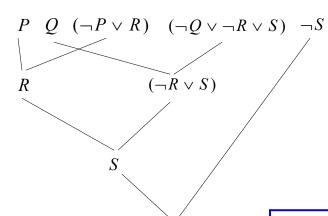
$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S



Contradiction

Proved: S

CS 1571 Intro to Al

KB in restricted forms

• If the sentences in the KB are restricted to some special forms other sound inference rules may become complete

Example:

• Horn form (Horn normal form)

$$(A \lor \neg B) \land (\neg A \lor \neg C \lor D)$$

Can be written also as: $(B \Rightarrow A) \land ((A \land C) \Rightarrow D)$

- Modus ponens:
 - is the "universal "(complete) rule for the sentences in the Horn form

$$\frac{A \Rightarrow B, \quad A}{B} \qquad \frac{A_1 \land A_2 \land \dots \land A_k \Rightarrow B, A_1, A_2, \dots A_k}{B}$$

CS 1571 Intro to A

M. Hauskrecht

KB in Horn form

• Horn form: a clause with at most one positive literal

$$(A \vee \neg B) \wedge (\neg A \vee \neg C \vee D)$$

- Not all sentences in propositional logic can be converted into the Horn form
- KB in Horn normal form:
 - Two types of propositional statements:
 - Implications: called **rules** $(B \Rightarrow A)$
 - Propositional symbols: **facts** B
- Application of the modus ponens:
 - Infers new facts from previous facts

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to Al

Forward and backward chaining

Two inference procedures based on **modus ponens** for **Horn KBs**:

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

• Backward chaining (goal reduction)

Idea: To prove the fact that appears in the conclusion of a rule prove the premises of the rule. Continue recursively.

Both procedures are complete for KBs in the Horn form !!!

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining example

Forward chaining

Idea: Whenever the premises of a rule are satisfied, infer the conclusion. Continue with rules that became satisfied.

Assume the KB with the following rules and facts:

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A F2: B F3: D

Theorem: E?

CS 1571 Intro to Al

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

CS 1571 Intro to Al

M. Hauskrecht

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3· $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

CS 1571 Intro to Al

Forward chaining example

Theorem: E

KB: R1: $A \wedge B \Rightarrow C$

R2: $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

F2: *B*

F3: *D*

Rule R1 is satisfied.

F4: *C*

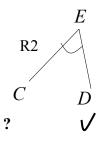
Rule R2 is satisfied.

F5: *E*

CS 1571 Intro to Al

M. Hauskrecht

Backward chaining example



KB: R1: $A \wedge B \Rightarrow C$

R2· $C \wedge D \Rightarrow E$

R3: $C \wedge F \Rightarrow G$

F1: A

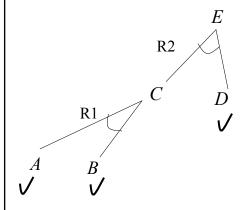
F2: *B*

F3: *D*

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to Al

Backward chaining example



- KB: R1: $A \wedge B \Rightarrow C$
 - R2: $C \wedge D \Rightarrow E$
 - R3: $C \wedge F \Rightarrow G$
 - F1: A
 - F2: *B*
 - F3: D

- Backward chaining is more focused:
 - tries to prove the theorem only

CS 1571 Intro to Al

M. Hauskrecht

KB agents based on propositional logic

- Propositional logic allows us to build **knowledge-based agents** capable of answering queries about the world by infering new facts from the known ones
- Example: an agent for diagnosis of a bacterial disease

Facts: The stain of the organism is gram-positive

The growth conformation of the organism is chains

Rules: (If) The stain of the organism is gram-positive \land

The morphology of the organism is coccus \triangle

The growth conformation of the organism is chains

(Then) ⇒ The identity of the organism is streptococcus

CS 1571 Intro to Al