CS 1571 Introduction to AI Lecture 15

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

Midterm exam:

• Wednesday, October 25, 2006

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called a theorem),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

CS 1571 Intro to Al

M. Hauskrecht

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB \models \alpha$$
 ?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to Al

Truth-table approach

Problem: $KB \models \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False values to propositional symbols)

Example:	KB	α
P Q	$P \vee Q$ $P \Leftrightarrow Q$	$(P \vee \neg Q) \wedge Q$
True True True False False True False False	True False	True False False False

CS 1571 Intro to Al

M. Hauskrecht

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:	KB	α
P Q	$P \vee Q$ $P \Leftrightarrow Q$	$(P \vee \neg Q) \wedge Q$
True True True False False True False False	True False True False	True False False False

CS 1571 Intro to Al

Truth-table approach

Problem: $KB = \alpha$?

• We need to check all possible interpretations for which the KB is true (models of KB) whether α is true for each of them

Truth table:

• enumerates truth values of sentences for all possible interpretations (assignments of True/False to propositional symbols)

Example:		KB		α		
	P	Q	$P \vee Q$	$P \Leftrightarrow Q$	$(P \lor \neg Q) \land Q$]
	True	True	True	True	True	V
	True	False		False	False	
	False	True	True	False	False	
	False	False	False	True	False	
						•
				CS 1571 Intro to Al	M. I	lauskrecht

Inference rules approach.

$$KB = \alpha$$
?

Problem with the truth table approach:

- the truth table is **exponential** in the number of propositional symbols (we checked all assignments)
- KB is true on only a smaller subset

How to make the process more efficient?

Solution: check only entries for which KB is *True*.

This is the idea behind the inference rules approach

Inference rules:

- Represent sound inference patterns repeated in inferences
- Can be used to generate new (sound) sentences from the existing ones

CS 1571 Intro to Al

Inference rules for logic

Modus ponens

$$A \Rightarrow B$$
, A premise conclusion

- If both sentences in the premise are true then conclusion is true.
- The modus ponens inference rule is **sound.**
 - We can prove this through the truth table.

A	В	$A \Rightarrow B$
False	False	True
False	True	True
True	<u> False</u>	False
True	True	True

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- $\mathbf{2.} \quad P \stackrel{\sim}{\Rightarrow} \ R$
- 3. $(Q \wedge R) \Rightarrow S$

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem:** S

- **1.** *P* ∧ *Q*
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *F*

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q \quad P \Rightarrow R \quad (Q \wedge R) \Rightarrow S$ **Theorem:** S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- 5. R

From 2,4 and Modus ponens

$$\frac{A \Rightarrow B, \quad A}{B}$$

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- 2. $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- **6.** Q

From 1 and And-elim

$$\frac{A_1 \wedge A_2 \wedge A_n}{A_i}$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- **1.** *P* ∧ *Q*
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *F*
- **5.** *R*
- **6.** Q
- 7. $(Q \wedge R)$

From 5,6 and And-introduction

$$\frac{A_1, A_2, \quad A_n}{A_1 \wedge A_2 \wedge \quad A_n}$$

CS 1571 Intro to Al

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- 1. $P \wedge Q$
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- **4.** *P*
- **5.** *R*
- 6. Q
- 7. $(Q \wedge R)$
- **8.** S

- $\frac{A \Rightarrow B, \quad A}{B}$
- From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to Al

M. Hauskrecht

Example. Inference rules approach.

KB: $P \wedge Q$ $P \Rightarrow R$ $(Q \wedge R) \Rightarrow S$ **Theorem**: S

- **1.** *P* ∧ *Q*
- $P \Rightarrow R$
- 3. $(Q \wedge R) \Rightarrow S$
- 4. P From 1 and And-elim
- 5. R From 2,4 and Modus ponens
- 6. Q From 1 and And-elim
- 7. $(Q \land R)$ From 5,6 and And-introduction
- 8. S From 7,3 and Modus ponens

Proved: S

CS 1571 Intro to Al

Logic inferences and search

- To show that theorem α holds for a KB
 - we may need to apply a number of sound inference rules

Problem: many possible rules to can be applied next

Looks familiar?

This is an instance of a search problem:

Truth table method (from the search perspective):

blind enumeration and checking

CS 1571 Intro to Al

M. Hauskrecht

Logic inferences and search

Inference rule method as a search problem:

- State: a set of sentences that are known to be true
- **Initial state**: a set of sentences in the KB
- Operators: applications of inference rules
 - Allow us to add new sound sentences to old ones
- Goal state: a theorem α is derived from KB

Logic inference:

- **Proof:** A sequence of sentences that are immediate consequences of applied inference rules
- Theorem proving: process of finding a proof of theorem

CS 1571 Intro to Al

Normal forms

Sentences in the propositional logic can be transformed into one of the normal forms. This can simplify the inferences.

Normal forms used:

Conjunctive normal form (CNF)

• conjunction of clauses (clauses include disjunctions of literals)

$$(A \lor B) \land (\neg A \lor \neg C \lor D)$$

Disjunctive normal form (DNF)

• Disjunction of terms (terms include conjunction of literals)

$$(A \land \neg B) \lor (\neg A \land C) \lor (C \land \neg D)$$

CS 1571 Intro to Al

M. Hauskrecht

Conversion to a CNF

Assume: $\neg (A \Rightarrow B) \lor (C \Rightarrow A)$

1. Eliminate \Rightarrow , \Leftrightarrow

$$\neg(\neg A \lor B) \lor (\neg C \lor A)$$

2. Reduce the scope of signs through DeMorgan Laws and double negation

$$(A \land \neg B) \lor (\neg C \lor A)$$

3. Convert to CNF using the associative and distributive laws

$$(A \vee \neg C \vee A) \wedge (\neg B \vee \neg C \vee A)$$

and

$$(A \lor \neg C) \land (\neg B \lor \neg C \lor A)$$

CS 1571 Intro to Al

Satisfiability (SAT) problem

Determine whether a sentence in the conjunctive normal form (CNF) is satisfiable (I.e. can evaluate to true)

$$(P \lor Q \lor \neg R) \land (\neg P \lor \neg R \lor S) \land (\neg P \lor Q \lor \neg T) \dots$$

It is an instance of a constraint satisfaction problem:

- Variables:
 - Propositional symbols (*P*, *R*, *T*, *S*)
 - Values: *True*, *False*
- Constraints:
 - Every conjunct must evaluate to true, at least one of the literals must evaluate to true
- All techniques developed for CSPs can be applied to solve the logical inference problem. Why?

CS 1571 Intro to Al

M. Hauskrecht

Inference problem and satisfiability

Inference problem:

- we want to show that the sentence α is entailed by KB **Satisfiability:**
- The sentence is satisfiable if there is some assignment (interpretation) under which the sentence evaluates to true

Connection:

$$KB \models \alpha$$
 if and only if $(KB \land \neg \alpha)$ is **unsatisfiable**

Consequences:

- inference problem is NP-complete
- programs for solving the SAT problem can be used to solve the inference problem

CS 1571 Intro to Al

Universal inference rule: Resolution rule

Sometimes inference rules can be combined into a single rule **Resolution rule**

- sound inference rule that works for CNF
- It is complete for propositional logic (refutation complete)

$$\frac{A \vee B, \quad \neg A \vee C}{B \vee C}$$

A	В	С	$A \vee B$	$\neg B \lor C$	$A \lor C$
False	False	False	False	True	False
False	False	True	False	True	True
False	True	False	True	False	False
<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	<u>False</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>
<u>True</u>	<u>False</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>
True	True	False	True	False	True
<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>	<u>True</u>

CS 1571 Intro to Al

M. Hauskrecht

Universal rule: Resolution.

Initial obstacle:

 Repeated application of the resolution rule to a KB in CNF may fail to derive new valid sentences

Example:

We know: $(A \wedge B)$ We want to show: $(A \vee B)$

Resolution rule fails to derive it (incomplete ??)

A trick to make things work:

- proof by contradiction
 - **Disproving:** KB, $\neg \alpha$
 - Proves the entailment $KB = \alpha$

CS 1571 Intro to Al

Resolution algorithm

Algorithm:

- Convert KB to the CNF form;
- Apply iteratively the resolution rule starting from KB, $\neg \alpha$ (in CNF form)
- Stop when:
 - Contradiction (empty clause) is reached:
 - $A, \neg A \rightarrow \emptyset$
 - proves entailment.
 - No more new sentences can be derived
 - disproves it.

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem**: S

Step 1. convert KB to CNF:

- $P \wedge Q \longrightarrow P \wedge Q$
- $P \Rightarrow R \longrightarrow (\neg P \lor R)$
- $(Q \land R) \Rightarrow S \longrightarrow (\neg Q \lor \neg R \lor S)$

KB:
$$P Q (\neg P \lor R) (\neg Q \lor \neg R \lor S)$$

Step 2. Negate the theorem to prove it via refutation

$$S \longrightarrow \neg S$$

Step 3. Run resolution on the set of clauses

$$P \quad Q \quad (\neg P \lor R) \quad (\neg Q \lor \neg R \lor S) \quad \neg S$$

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

$$P \ Q \ (\neg P \lor R) \ (\neg Q \lor \neg R \lor S) \ \neg S$$

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

$$\begin{array}{cccc}
P & Q & (\neg P \lor R) & (\neg Q \lor \neg R \lor S) & \neg S \\
R
\end{array}$$

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

CS 1571 Intro to Al

M. Hauskrecht

Example. Resolution.

KB: $(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$ **Theorem:** S

CS 1571 Intro to Al

Example. Resolution.

KB:
$$(P \land Q) \land (P \Rightarrow R) \land [(Q \land R) \Rightarrow S]$$
 Theorem: S

Contradiction \longrightarrow {

Proved: S

CS 1571 Intro to Al