CS 1571 Introduction to AI Lecture 13

Propositional logic

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Announcements

• Homework assignment 5 is out

Midterm exam:

Wednesday, October 25, 2006

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

CS 1571 Intro to Al

Knowledge representation

CS 1571 Intro to Al

M. Hauskrecht

Knowledge-based agent

Knowledge base

Inference engine

- Knowledge base (KB):
 - A set of sentences that describe facts about the world in some formal (representational) language
 - Domain specific
- Inference engine:
 - A set of procedures that use the representational language to infer new facts from known ones or answer a variety of KB queries. Inferences typically require search.
 - Domain independent

CS 1571 Intro to Al

Example: MYCIN

- MYCIN: an expert system for diagnosis of bacterial infections
- Knowledge base represents
 - Facts about a specific patient case
 - Rules describing relations between entities in the bacterial infection domain

If

- 1. The stain of the organism is gram-positive, and
- 2. The morphology of the organism is coccus, and
- 3. The growth conformation of the organism is chains

Then the identity of the organism is streptococcus

- Inference engine:
 - manipulates the facts and known relations to answer diagnostic queries (consistent with findings and rules)

CS 1571 Intro to Al

M. Hauskrecht

Knowledge representation

- The objective of knowledge representation is to express the knowledge about the world in a computer-tractable form
- Key aspects of knowledge representation languages:
 - Syntax: describes how sentences are formed in the language
 - Semantics: describes the meaning of sentences, what is it the sentence refers to in the real world
 - Computational aspect: describes how sentences and objects are manipulated in concordance with semantical conventions

Many KB systems rely on some variant of logic

CS 1571 Intro to Al

Logic

- Logic:
 - defines a formal language for logical reasoning
- A tool that helps us to understand how to construct a valid argument
- · Logic Defines:
 - the meaning of statements
 - the rules of logical inference

CS 1571 Intro to Al

M. Hauskrecht

Logic

A formal language for expressing knowledge and ways of reasoning.

Logic is defined by:

- A set of sentences
 - A sentence is constructed from a set of primitives according to syntax rules.
- A set of interpretations
 - An interpretation gives a semantic to primitives. It associates primitives with values.
- The valuation (meaning) function V
 - Assigns a value (typically the truth value) to a given sentence under some interpretation

V: sentence \times interpretation \rightarrow {True, False}

CS 1571 Intro to Al

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - 5 + 2 = 8.
 - ?

CS 1571 Intro to Al

- The simplest logic
- Definition:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - (F)
 - It is raining today.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- The simplest logic
- **Definition**:
 - A proposition is a statement that is either true or false.
- Examples:
 - Pitt is located in the Oakland section of Pittsburgh.
 - (T)
 - -5+2=8.
 - (F)
 - It is raining today.
 - (either T or F)

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?

• ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - ?

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - · a question is not a proposition
 - -x+5=3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - ?

CS 1571 Intro to Al

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - ?

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic

- Examples (cont.):
 - How are you?
 - a question is not a proposition
 - x + 5 = 3
 - since x is not specified, neither true nor false
 - 2 is a prime number.
 - (T)
 - She is very talented.
 - since she is not specified, neither true nor false
 - There are other life forms on other planets in the universe.
 - either T or F

CS 1571 Intro to Al

Propositional logic. Syntax

- Formally propositional logic P:
 - Is defined by Syntax+interpretation+semantics of P

Syntax:

- Symbols (alphabet) in P:
 - Constants: True, False
 - Propositional symbols

Examples:

- P
- Pitt is located in the Oakland section of Pittsburgh.,
- It rains outside, etc.
- A set of connectives:

$$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$$

CS 1571 Intro to Al

M. Hauskrecht

Propositional logic. Syntax

Sentences in the propositional logic:

- Atomic sentences:
 - Constructed from constants and propositional symbols
 - True, False are (atomic) sentences
 - P, Q or Light in the room is on, It rains outside are (atomic) sentences
- Composite sentences:
 - Constructed from valid sentences via connectives
 - If A, B are sentences then $\neg A \ (A \land B) \ (A \lor B) \ (A \Rightarrow B) \ (A \Leftrightarrow B)$ or $(A \lor B) \land (A \lor \neg B)$

are sentences

CS 1571 Intro to Al

Propositional logic. Semantics.

The semantic gives the meaning to sentences.

the semantics in the propositional logic is defined by:

- 1. Interpretation of propositional symbols and constants
 - Semantics of atomic sentences
- 2. Through the meaning of connectives
 - Meaning (semantics) of composite sentences

CS 1571 Intro to Al

M. Hauskrecht

Semantic: propositional symbols

A propositional symbol

- a statement about the world that is either true or false Examples:
 - Pitt is located in the Oakland section of Pittsburgh
 - It rains outside
 - Light in the room is on
- An **interpretation** maps symbols to one of the two values: *True (T)*, or *False (F)*, depending on whether the symbol is satisfied in the world
 - I: Light in the room is on -> True, It rains outside -> False
 - I': Light in the room is on -> False, It rains outside -> False

CS 1571 Intro to Al

Semantic: propositional symbols

The **meaning (value)** of the propositional symbol for a specific interpretation is given by its interpretation

- I: Light in the room is on -> True, It rains outside -> False

 V(Light in the room is on, I) = True

 V(It rains outside, I) = False
- I': Light in the room is on -> False, It rains outside -> False V(Light in the room is on, I') = False

CS 1571 Intro to Al

M. Hauskrecht

Semantics: constants

- The meaning (truth) of constants:
 - True and False constants are always (under any interpretation) assigned the corresponding *True,False* value

$$V(True, \mathbf{I}) = \mathbf{True}$$

$$V(False, \mathbf{I}) = \mathbf{False}$$
For any interpretation \mathbf{I}

CS 1571 Intro to Al

Semantics: composite sentences.

- The meaning (truth value) of complex propositional sentences.
 - Determined using the standard rules of logic:

P ($Q \qquad \neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
True Fo			True True True False	True False True True	True False False True

CS 1571 Intro to Al

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday.
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny.
- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

M. Hauskrecht

Translation

Assume the following sentences:

• It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$

CS 1571 Intro to Al

We will go swimming only if it is sunny.

 $r \rightarrow p$

- If we do not go swimming then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset.

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

CS 1571 Intro to Al

M. Hauskrecht

Translation

Assume the following sentences:

- It is not sunny this afternoon and it is colder than yesterday. $\neg p \land q$
- We will go swimming only if it is sunny. $r \rightarrow p$
- If we do not go swimming then we will take a canoe trip. $\neg r \rightarrow s$
- If we take a canoe trip, then we will be home by sunset. $S \rightarrow t$

Denote:

- p = It is sunny this afternoon
- q = it is colder than yesterday
- r = We will go swimming
- s= we will take a canoe trip
- t= We will be home by sunset

Contradiction and Tautology

Some composite sentences may always (under any interpretation) evaluate to a single truth value:

Contradiction (always False)

$$P \wedge \neg P$$

• Tautology (always True)

$$P \vee \neg P$$

$$\neg (P \vee Q) \Leftrightarrow (\neg P \wedge \neg Q)$$

$$\neg (P \wedge Q) \Leftrightarrow (\neg P \vee \neg Q)$$
DeMorgan's Laws

CS 1571 Intro to Al

M. Hauskrecht

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True False	False True	True True	True False	True True
False	False	False	False	True

CS 1571 Intro to Al

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True	True	True	False	True
True	False		True	True
False	True		False	True
False	False		False	True

CS 1571 Intro to Al

M. Hauskrecht

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

Satisfiable sentence				
Р	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True True True False	False True False False	True True True True

CS 1571 Intro to Al

Model, validity and satisfiability

- A model (in logic): An interpretation is a model for a set of sentences if it assigns true to each sentence in the set.
- A sentence is **satisfiable** if it has a model;
 - There is at least one interpretation under which the sentence can evaluate to True.
- A sentence is **valid** if it is *True* in all interpretations
 - i.e., if its negation is **not satisfiable** (leads to contradiction)

		Satis	fiable sentence	Valid sentence
P	Q	$P \vee Q$	$(P \lor Q) \land \neg Q$	$((P \lor Q) \land \neg Q) \Rightarrow P$
True True False False	True False True False	True	False True False False	True True True True

CS 1571 Intro to Al

M. Hauskrecht

Entailment

• **Entailment** reflects the relation of one fact in the world following from the others

- Entailment $KB = \alpha$
- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

CS 1571 Intro to Al

Sound and complete inference.

Inference is a process by which conclusions are reached.

• We want to implement the inference process on a computer !!

Assume an **inference procedure** *i* that

• derives a sentence α from the KB: $KB \vdash_i \alpha$

Properties of the inference procedure in terms of entailment

Soundness: An inference procedure is sound

If $KB \vdash_i \alpha$ then it is true that $KB \models \alpha$

• Completeness: An inference procedure is complete

If $KB \models \alpha$ then it is true that $KB \models_i \alpha$

CS 1571 Intro to Al

M. Hauskrecht

Logical inference problem

Logical inference problem:

- Given:
 - a knowledge base KB (a set of sentences) and
 - a sentence α (called **a theorem**),
- Does a KB semantically entail α ? $KB = \alpha$?

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Question: Is there a procedure (program) that can decide this problem in a finite number of steps?

Answer: Yes. Logical inference problem for the propositional logic is **decidable**.

CS 1571 Intro to Al

Solving logical inference problem

In the following:

How to design the procedure that answers:

$$KB = \alpha$$
?

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
 - Resolution-refutation

CS 1571 Intro to Al