CS 1571 Introduction to AI Lecture 10

Finding optimal configurations (combinatorial optimization)

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to Al

M. Hauskrecht

Constraint satisfaction problem (CSP)

Constraint satisfaction problem (CSP) is a configuration search problem where:

- A state is defined by a set of variables
- Goal condition is represented by a set constraints on possible variable values

Special properties of the CSP allow more specific procedures to be designed and applied for solving them

CS 1571 Intro to Al

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:

- Represent queens, one for each column:
 - $-Q_1,Q_2,Q_3,Q_4$
- Values:
 - Row placement of each queen on the board {1, 2, 3, 4}

$$Q_1 = 2, Q_2 = 4$$

Constraints: $Q_i \neq Q_j$ Two queens not in the same row $|Q_i - Q_j| \neq |i - j|$ Two queens not on the same diagonal

CS 1571 Intro to Al

M. Hauskrecht

Solving a CSP problem

- Initial state. No variable is assigned a value.
- Operators. Assign a value to one of the unassigned variables.
- Goal condition. All variables are assigned, no constraints are violated.

CS 1571 Intro to Al

Solving a CSP problem • Search strategy: ? Unassigned: Q_1, Q_2, Q_3, Q_4 Assigned: Q_1, Q_2, Q_3, Q_4 Assigned: $Q_1 = 1$ Unassigned: Q_2, Q_3, Q_4 Assigned: $Q_1 = 2$ Unassigned: $Q_1 = 2$ Unassigned: Q_2, Q_3, Q_4 Assigned: $Q_1 = 2, Q_2 = 4$ M. Hauskrecht

Solving a CSP problem

- Search strategy: DFS
- Constraints may be violated earlier:
 - constraint propagation infers valid and invalid assignments

Constraint propagation

Three known techniques for propagating the effects of past assignments and constraints:

- Value propagation
- Arc consistency
- Forward checking
- Difference:
 - Completeness of inferences
 - Time complexity of inferences.

CS 1571 Intro to Al

Solving a CSP problem

- Search strategy: DFS
- · Constraint propagation infers valid and invalid assignments
- What candidate to expand first in the DFS?

Heuristics for CSP

Examples: map coloring

Heuristics

- Most constrained variable
 - Country E is the most constrained one (cannot use Red, Green)
- Least constraining value
 - Assume we have chosen variable C
 - Red is the least constraining valid color for the future

CS 1571 Intro to Al

Search for the optimal configuration

Objective:

• find the optimal configuration

Optimality:

• Defined by some quality measure

Quality measure

reflects our preference towards each configuration (or state)

CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

Problem:

A graph with distances

• Goal: find the shortest tour which visits every city once and returns to the start

An example of a valid **tour:** ABCDEF

CS 1571 Intro to Al

Example: N queens

- A CSP problem can be converted to the 'optimal' configuration problem
- The quality of a configuration in a CSP
 - = the number of constraints violated
- Solving: minimize the number of constraint violations

of violations =3

of violations =1

of violations =0

CS 1571 Intro to Al

M. Hauskrecht

Iterative optimization methods

- Searching systematically for the best configuration with the **DFS** may not be the best solution
- Worst case running time:
 - Exponential in the number of variables
- Solutions to **large 'optimal' configuration** problems are often found using iterative optimization methods
- Methods:
 - Hill climbing
 - Simulated Annealing
 - Genetic algorithms

CS 1571 Intro to Al

Iterative optimization methods

Properties:

- Search the space of "complete" configurations
- Take advantage of local moves
 - Operators make "local" changes to "complete" configurations
- Keep track of just one state (the current state)
 - no memory of past states
 - !!! No search tree is necessary !!!

CS 1571 Intro to Al

M. Hauskrecht

Example: N-queens

- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position

CS 1571 Intro to Al

Example: Traveling salesman problem

"Local" operator for generating the next state:

- · divide the existing tour into two parts,
- reconnect the two parts in the opposite order

ABCDEF ABCD | EF | ABCDFE ABCDFE ABCDFE

CS 1571 Intro to Al

M. Hauskrecht

Example: Traveling salesman problem

"Local" operator:

- generates the next configuration (state)

CS 1571 Intro to AI

Searching the configuration space

Search algorithms

• keep only one configuration (the current configuration)

• How to decide about which operator to apply?

CS 1571 Intro to Al

M. Hauskrecht

Search algorithms

Two strategies to choose the configuration (state) to be visited next:

- Hill climbing
- Simulated annealing
- Later: Extensions to multiple current states:
 - Genetic algorithms
- Note: Maximization is inverse of the minimization $\min f(X) \Leftrightarrow \max [-f(X)]$

CS 1571 Intro to Al

Hill climbing

- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the

Hill climbing

- Always choose the next best successor state
- Stop when no improvement possible

```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current← MAKE-NODE(INITIAL-STATE[problem])
loop do
next← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current← next
end
```

CS 1571 Intro to Al

Hill climbing

• Look around at states in the local neighborhood and choose the one with the best value

· What can go wrong?

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing

• Hill climbing can get trapped in the local optimum

• What can go wrong?

CS 1571 Intro to Al

Hill climbing

• Hill climbing can get clueless on plateaus

CS 1571 Intro to Al

M. Hauskrecht

Hill climbing and n-queens

- The quality of a configuration is given by the number of constraints violated
- Then: Hill climbing reduces the number of constraints
- Min-conflict strategy (heuristic):
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints

Success!! But not always!!! The local optima problem!!!

CS 1571 Intro to Al

Simulated annealing

- Permits "bad" moves to states with lower value, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)

Simulated annealing algorithm

The probability of making a move:

- The probability of moving into a state with a higher value is 1
- The probability of moving into a state with a lower value is $p(Accept\ NEXT\) = e^{\Delta E/T} \quad \text{where} \qquad \Delta E = E_{NEXT} E_{CURRENT}$
 - The probability is:
 - Proportional to the energy difference

CS 1571 Intro to Al

Simulated annealing algorithm

The probability of moving into a state with a lower value is

$$p(Accept) = e^{\Delta E/T}$$
 where $\Delta E = E_{NEXT} - E_{CURRENT}$

The probability is:

- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \to 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps

current← MAKE-NODE(INITIAL-STATE[problem])

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T=0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow \text{Value}[next] - \text{Value}[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

CS 1571 Intro to Al

M. Hauskrecht

Simulated annealing algorithm

- · Simulated annealing algorithm
 - developed originally for modeling physical processes (Metropolis et al, 53)
- Properties:
 - If T is decreased slowly enough the best configuration (state) is always reached
- Applications:
 - VLSI design
 - airline scheduling

M. Hauskrecht

CS 1571 Intro to Al

Simulated evolution and genetic algorithms

- Limitations of simulated annealing:
 - Pursues one state configuration at the time;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!!)

This is the idea behind **genetic algorithms** in which we grow a population of individual combinations

CS 1571 Intro to Al