CS 1571 Introduction to Al
Lecture 10

Finding optimal configurations
(combinatorial optimization)

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al M. Hauskrecht

Constraint satisfaction problem (CSP)

Constraint satisfaction problem (CSP) is a configuration
search problem where:

» A state is defined by a set of variables

* Goal condition is represented by a set constraints on
possible variable values

Special properties of the CSP allow more specific procedures to
be designed and applied for solving them

CS 1571 Intro to Al M. Hauskrecht

Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:

» Represent queens, one for each column:

- Q19Q29Q39Q4

* Values:

— Row placement of each queen on the board 0,=2,0,=4
{1,2,3,4}

Constraints: Q. # 0 i Two queens not in the same row

10, -0 j [#li—j| Two queens not on the same diagonal

CS 1571 Intro to Al M. Hauskrecht

Solving a CSP problem

+ Initial state. No variable is assigned a value.

* Operators. Assign a value to one of the unassigned variables.

Goal condition. All variables are assigned, no constraints are
violated.
Unassigned: 0,,0,,0;,0. E;E;
Assigned:
Unassigned:0,,05,0, Unassigned:0,, 05,0,

Assigned: 0 =1 Assigned: 0, = 2 E;E;

Assigned: 0, =2,0, =4

Unassigned: 05,0,
CS 1571 Intro to Al M. Hauskrecht

Solving a CSP problem

* Search strategy: ?

Unassigned: Q,,0,,05,0.
Assigned:

Unassigned:Q,, 05,0, | Unassigned:Q0,,05,0, E;E;
Assigned: 0 =1 Assigned: 0, = 2

Unassigned: 05,0,
Assigned: 0, = 2,0, =4

CS 1571 Intro to Al M. Hauskrecht

Solving a CSP problem

* Search strategy: DFS

* Constraints may be violated earlier ...

Unassigned: 0,,0,,0;,0. E;E;

Assigned:

Unassigned:0,, 05,0, Unassigned:0,,0;,0, E;E;

Assigned: 0 =1 Assigned: 0, = 2

Unassigned: Q;,0,
x|

Assigned: 0, =2,0, =4

CS 1571 Intro to Al M. Hauskrecht

Solving a CSP problem

* Search strategy: DFS

* Constraints may be violated earlier:

— constraint propagation infers valid and invalid assignments

Assigned:

Unassigned: 0,,0,, 05, QJE;E;

Assigned: 0 =1 Assigned: 0, = 2

Unassigned:Q,, 05,0, Unassigned:Q,, 05,0,

SN

T~

Unassigned: 05,0,

Assigned: 0, = 2,0, =4

LA

CS 1571 Intro to Al

M. Hauskrecht

Constraint propagation

Three known techniques for propagating the effects of past

assignments and constraints:

* Value propagation
* Arc consistency
* Forward checking

» Difference:
— Completeness of inferences
— Time complexity of inferences.

CS 1571 Intro to Al

M. Hauskrecht

Solving a CSP problem

* Search strategy: DFS

* Constraint propagation infers valid and invalid assignments
* What candidate to expand first in the DFS?

Unassigned: 0,,0,,0,,0. E;E;
Assigned:

Unassigned:Q,, 05,0,
Assigned: 0 =1

Unassigned:Q0,, 05,0,
Assigned: 0, = 2

Unassigned: 05,0,
Assigned: 0, = 2,0, =4

LA

CS 1571 Intro to Al M. Hauskrecht

Heuristics for CSP

Examples: map coloring

Heuristics

* Most constrained variable T RED
— Country E is the most constrained
one (cannot use Red, Green)

* Least constraining value E
— Assume we have chosen

variable C

— Red is the least constraining

GREEN

valid color for the future

CS 1571 Intro to Al M. Hauskrecht

Search for the optimal configuration

Objective:
 find the optimal configuration

Optimality:
* Defined by some quality measure

Quality measure

+ reflects our preference towards each configuration (or
state)

CS 1571 Intro to Al M. Hauskrecht

Example: Traveling salesman problem

Problem:
» A graph with distances
A

N
N

* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF

F
B

CS 1571 Intro to Al M. Hauskrecht

Example: N queens

* A CSP problem can be converted to the ‘optimal’
configuration problem

* The quality of a configuration in a CSP
= the number of constraints violated
* Solving: minimize the number of constraint violations

of violations =3 # of violations =1 # of violations =0

CS 1571 Intro to Al M. Hauskrecht

Iterative optimization methods

+ Searching systematically for the best configuration with the
DFS may not be the best solution

* Worst case running time:
— Exponential in the number of variables

 Solutions to large ‘optimal’ configuration problems are often
found using iterative optimization methods

* Methods:
— Hill climbing
— Simulated Annealing
— Genetic algorithms

CS 1571 Intro to Al M. Hauskrecht

Iterative optimization methods

Properties:

— Search the space of “complete” configurations
— Take advantage of local moves

» Operators make “local” changes to “complete”
configurations

— Keep track of just one state (the current state)
* no memory of past states
« !!! No search tree is necessary !!!

CS 1571 Intro to Al M. Hauskrecht

Example: N-queens

* “Local” operators for generating the next state:
— Select a variable (a queen)
— Reallocate its position

wﬂf%ﬂf
-5

CS 1571 Intro to Al M. Hauskrecht

Example: Traveling salesman problem

“Local” operator for generating the next state:
 divide the existing tour into two parts,
+ reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD | EF |
1 Part 2

ABCDFE

CS 1571 Intro to Al M. Hauskrecht

Example: Traveling salesman problem

“Local” operator:
— generates the next configuration (state)

€S 1571 Intro to AIC M. Hauskrecht

Searching the configuration space

Search algorithms
» keep only one configuration (the current configuration)

Problem:
» How to decide about which operator to apply?

CS 1571 Intro to Al M. Hauskrecht

Search algorithms

Two strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

 Later: Extensions to multiple current states:
— Genetic algorithms

* Note: Maximization is inverse of the minimization

min f(X) < max [- f(X)]

CS 1571 Intro to Al M. Hauskrecht

Hill climbing

» Look around at states in the local neighborhood and choose the
one with the best value

* Assume: we want to maximize the

value

/J\ Better
/

states

CS 1571 Intro to Al M. Hauskrecht

Hill climbing

» Always choose the next best successor state
» Stop when no improvement possible

function HILL-CLIMBING(problent) returns a solution state
inputs: prablem. a problem
statie: current. anode
next, a node

currents— MAKE-NODE(INITIAL-STATE [problem))

loop do
next +— a highest-valued successor of current
if VALUE[next] = VALUE[current] then return current
current +— wext

end

CS 1571 Intro to Al M. Hauskrecht

Hill climbing

» Look around at states in the local neighborhood and choose the
one with the best value

SN

\
states

value

NG

* What can go wrong?

CS 1571 Intro to Al M. Hauskrecht

Hill climbing

+ Hill climbing can get trapped in the local optimum

No more
value local improvement

Better

/
A

states

* What can go wrong?

CS 1571 Intro to Al M. Hauskrecht

Hill climbing

 Hill climbing can get clueless on plateaus

value

?
=
. o

plateau

states

CS 1571 Intro to Al M. Hauskrecht

Hill climbing and n-queens

» The quality of a configuration is given by the number of
constraints violated

* Then: Hill climbing reduces the number of constraints
* Min-conflict strategy (heuristic):
— Choose randomly a variable with conflicts
— Choose its value such that it violates the fewest constraints

W W
14 £

Success !! But not always!!! The local optima problem!!!

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing

* Permits “bad” moves to states with lower value, thus escape
the local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

Always up
ometimes .
down / \

value

states

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm

The probability of making a move:
» The probability of moving into a state with a higher value is 1

» The probability of moving into a state with a lower value is

p(Accept NEXT) =e™'" where AE =E 5y — E cpprenr

— The probability is:
* Proportional to the energy difference

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm

Current configuration
Energy E =145

Energy E =167 Energy E =180

Energy E =191

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm

AE = E iy — Ecorpanr

=145-167=-22

AE/IT -22/T

p(Accept) =e =e

Current configuration

Energy E =14 .
nerey > Sometimes accept

Energy E =167 Energy E =180

Energy E =191

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm

Current configuration .

Energy E =145

AE = E\pvr = Ecourrpnr
=180-167>0

p(Accept) =1

Energy E =167 Energy E =180

Always accept!

Energy E =191

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm
The probability of moving into a state with a lower value is

p(Accept) = e**'" where AE = E i = Ecypranr

The probability is:
— Modulated through a temperature parameter T:
« for T — oo the probability of any move approaches 1

« for T — 0 the probability that a state with smaller
value is selected goes down and approaches 0

* Cooling schedule:
— Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing

function SIMULATED-ANNEALING| problem, schedule) returns a solution state
inputs: problem. a problem
schedule. a mapping from time to “temperature”
static: current, anode
nexd, a node
T, a “temperature” controlling the probability of downward steps

current— MAKE-NODE({INITIAL-STATE[problen |}
for f+— | to = do

T schedule (1]

if 7=0 then return current

next+— arandomly selected successor of current

AE +— VALUE([rext] — VALUE[current]

if AE = 0 then current— pext

else current+— next only with probability T

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm

* Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

* Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

* Applications:
— VLSI design
— airline scheduling

CS 1571 Intro to Al M. Hauskrecht

Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration at the time;
— Changes to configurations are typically local

Can we do better?

* Assume we have two configurations with good values that are
quite different

» We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a
population of individual combinations

CS 1571 Intro to Al M. Hauskrecht

