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Constraint satisfaction problem (CSP)

Constraint satisfaction problem (CSP) is a configuration
search problem where:

» A state is defined by a set of variables

* Goal condition is represented by a set constraints on
possible variable values

Special properties of the CSP allow more specific procedures to
be designed and applied for solving them
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Example of a CSP: N-queens

Goal: n queens placed in non-attacking positions on the board

Variables:

» Represent queens, one for each column:

- Q19Q29Q39Q4

* Values:

— Row placement of each queen on the board 0,=2,0,=4
{1,2,3,4}

Constraints: Q. # 0 i Two queens not in the same row

10, -0 j [#li—j| Two queens not on the same diagonal
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Solving a CSP problem

+ Initial state. No variable is assigned a value.

* Operators. Assign a value to one of the unassigned variables.

Goal condition. All variables are assigned, no constraints are
violated.
Unassigned: 0,,0,,0;,0. E;E;
Assigned:
Unassigned:0,,05,0, Unassigned:0,, 05,0,

Assigned: 0 =1 Assigned: 0, = 2 E;E;

Assigned: 0, =2,0, =4

Unassigned: 05,0,
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Solving a CSP problem

* Search strategy: ?

Unassigned: Q,,0,,05,0.
Assigned:

Unassigned:Q,, 05,0, | Unassigned:Q0,,05,0, E;E;
Assigned: 0 =1 Assigned: 0, = 2

Unassigned: 05,0,
Assigned: 0, = 2,0, =4
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Solving a CSP problem

* Search strategy: DFS

* Constraints may be violated earlier ...

Unassigned: 0,,0,,0;,0. E;E;

Assigned:

Unassigned:0,, 05,0, Unassigned:0,,0;,0, E;E;

Assigned: 0 =1 Assigned: 0, = 2

Unassigned: Q;,0,
x|

Assigned: 0, =2,0, =4
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Solving a CSP problem

* Search strategy: DFS

* Constraints may be violated earlier:

— constraint propagation infers valid and invalid assignments

Assigned:

Unassigned: 0,,0,, 05, QJE;E;

Assigned: 0 =1 Assigned: 0, = 2

Unassigned:Q,, 05,0, Unassigned:Q,, 05,0,

SN

T~

Unassigned: 05,0,

Assigned: 0, = 2,0, =4

LA
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Constraint propagation

Three known techniques for propagating the effects of past

assignments and constraints:

* Value propagation
* Arc consistency
* Forward checking

» Difference:
— Completeness of inferences
— Time complexity of inferences.
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Solving a CSP problem

* Search strategy: DFS

* Constraint propagation infers valid and invalid assignments
* What candidate to expand first in the DFS?

Unassigned: 0,,0,,0,,0. E;E;
Assigned:

Unassigned:Q,, 05,0,
Assigned: 0 =1

Unassigned:Q0,, 05,0,
Assigned: 0, = 2

Unassigned: 05,0,
Assigned: 0, = 2,0, =4

LA
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Heuristics for CSP

Examples: map coloring

Heuristics

* Most constrained variable T RED
— Country E is the most constrained
one (cannot use Red, Green)

* Least constraining value E
— Assume we have chosen

variable C

— Red is the least constraining

GREEN

valid color for the future
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Search for the optimal configuration

Objective:
 find the optimal configuration

Optimality:
* Defined by some quality measure

Quality measure

+ reflects our preference towards each configuration (or
state)
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Example: Traveling salesman problem

Problem:
» A graph with distances
A

N
N

* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF

F
B
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Example: N queens

* A CSP problem can be converted to the ‘optimal’
configuration problem

* The quality of a configuration in a CSP
= the number of constraints violated
* Solving: minimize the number of constraint violations

# of violations =3 # of violations =1 # of violations =0
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Iterative optimization methods

+ Searching systematically for the best configuration with the
DFS may not be the best solution

* Worst case running time:
— Exponential in the number of variables

 Solutions to large ‘optimal’ configuration problems are often
found using iterative optimization methods

* Methods:
— Hill climbing
— Simulated Annealing
— Genetic algorithms
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Iterative optimization methods

Properties:

— Search the space of “complete” configurations
— Take advantage of local moves

» Operators make “local” changes to “complete”
configurations

— Keep track of just one state (the current state)
* no memory of past states
« !!! No search tree is necessary !!!
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Example: N-queens

* “Local” operators for generating the next state:
— Select a variable (a queen)
— Reallocate its position

wﬂf%ﬂf
-5
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Example: Traveling salesman problem

“Local” operator for generating the next state:
 divide the existing tour into two parts,
+ reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD | EF |
1 Part 2

ABCDFE
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Example: Traveling salesman problem

“Local” operator:
— generates the next configuration (state)
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Searching the configuration space

Search algorithms
» keep only one configuration (the current configuration)

Problem:
» How to decide about which operator to apply?
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Search algorithms

Two strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

 Later: Extensions to multiple current states:
— Genetic algorithms

* Note: Maximization is inverse of the minimization

min f(X) < max [- f(X)]
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Hill climbing

» Look around at states in the local neighborhood and choose the
one with the best value

* Assume: we want to maximize the

value

/J\ Better
/

states
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Hill climbing

» Always choose the next best successor state
» Stop when no improvement possible

function HILL-CLIMBING( problent) returns a solution state
inputs: prablem. a problem
statie: current. anode
next, a node

currents— MAKE-NODE( INITIAL-STATE [problem ))

loop do
next +— a highest-valued successor of current
if VALUE[next] = VALUE[current] then return current
current +— wext

end
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Hill climbing

» Look around at states in the local neighborhood and choose the
one with the best value

SN

\
states

value

NG

* What can go wrong?
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Hill climbing

+ Hill climbing can get trapped in the local optimum

No more
value local improvement

Better

/
A

states

* What can go wrong?
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Hill climbing

 Hill climbing can get clueless on plateaus

value

?
=
. o

plateau

states
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Hill climbing and n-queens

» The quality of a configuration is given by the number of
constraints violated

* Then: Hill climbing reduces the number of constraints
* Min-conflict strategy (heuristic):
— Choose randomly a variable with conflicts
— Choose its value such that it violates the fewest constraints

W W
14 £

Success !! But not always!!! The local optima problem!!!
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Simulated annealing

* Permits “bad” moves to states with lower value, thus escape
the local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

Always up
ometimes .
down / \

value

states
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Simulated annealing algorithm

The probability of making a move:
» The probability of moving into a state with a higher value is 1

» The probability of moving into a state with a lower value is

p(Accept NEXT ) =e™'" where  AE =E 5y — E cpprenr

— The probability is:
* Proportional to the energy difference
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Simulated annealing algorithm

Current configuration
Energy E =145

Energy E =167 Energy E =180

Energy E =191
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Simulated annealing algorithm

AE = E iy — Ecorpanr

=145-167=-22

AE/IT -22/T

p(Accept ) =e =e

Current configuration

Energy E =14 .
nerey > Sometimes accept

Energy E =167 Energy E =180

Energy E =191
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Simulated annealing algorithm

Current configuration .

Energy E =145

AE = E\pvr = Ecourrpnr
=180-167>0

p(Accept ) =1

Energy E =167 Energy E =180

Always accept!

Energy E =191
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Simulated annealing algorithm
The probability of moving into a state with a lower value is

p(Accept ) = e**'" where  AE = E i = Ecypranr

The probability is:
— Modulated through a temperature parameter T:
« for T — oo the probability of any move approaches 1

« for T — 0 the probability that a state with smaller
value is selected goes down and approaches 0

* Cooling schedule:
— Schedule of changes of a parameter T over iteration steps
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Simulated annealing

function SIMULATED-ANNEALING| problem, schedule) returns a solution state
inputs: problem. a problem
schedule. a mapping from time to “temperature”
static: current, anode
nexd, a node
T, a “temperature” controlling the probability of downward steps

current— MAKE-NODE({INITIAL-STATE[problen |}
for f+— | to = do

T schedule (1]

if 7=0 then return current

next+— arandomly selected successor of current

AE +— VALUE([rext] — VALUE[current]

if AE = 0 then current— pext

else current+— next only with probability T

CS 1571 Intro to Al M. Hauskrecht

Simulated annealing algorithm

* Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

* Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

* Applications:
— VLSI design
— airline scheduling
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Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration at the time;
— Changes to configurations are typically local

Can we do better?

* Assume we have two configurations with good values that are
quite different

» We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a
population of individual combinations
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