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Administration

* PS-2: due today
* PS-3: out, due next week
— Programming part:
* simulated annealing

* genetic algorithms
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Search for the optimal configuration

Configuration search problems:
* Are often enhanced with some quality measure

Quality measure

 reflects our preference towards each configuration (or state)

Goal
+ find the configuration with the optimal quality
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Example: Traveling salesman problem

Problem:
» A graph with distances

A

N
N

* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF

F
B
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Example: N queens

* Some CSP problems do not have a quality measure

* The quality of a configuration in a CSP can be measured by
the number of constraints violated

» Solving corresponds to the minimization of the number of
constraint violations

# of violations =3 # of violations =1 # of violations =0
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Local search methods

* Are often used to find solutions to large configuration search
problems with an additional optimality measure

* Properties of local search algorithms:
— Search the space of “complete” configurations

— Operators make “local” changes to “complete”
configurations

— Keep track of just one state (the current state), not a
memory of past states

 !!! No search tree is necessary !!!
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Example: Traveling salesman problem

Problem:
* A graph with distances
A

|
* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF
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Example: Traveling salesman problem

“Local” operator for generating the next state:
» divide the existing tour into two parts,
» reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD | EF |

!

ABCDFE
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Example: Traveling salesman problem

“Local” operator:

— generates the next configuration (state)

€S 1571 Intro to AIC

Example: N-queens

* “Local” operators for generating the next state:
— Select a variable (a queen)
— Reallocate its position

wﬂf%ﬂf
-5
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Searching configuration space

Local search algorithms
» keep only one configuration (the current configuration) active

Problem:
» How to decide about which operator to apply?
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Local search algorithms

Two strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

 Later: Extensions to multiple current states:
— Genetic algorithms

* Note: Maximization is inverse of the minimization

min f(X) < max [- f(X)]
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Hill climbing

* Local improvement algorithm

» Look around at states in the local neighborhood and choose the

one with the best value
* Assume: we want to maximize the

value

Better

Worse

states
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Hill climbing

» Always choose the next best successor state
» Stop when no improvement possible

function HILL-CLIMBING( problent) returns a solution state
inputs: prablem. a problem
statie: current. anode
next, a node

currents— MAKE-NODE( INITIAL-STATE [problem ))

loop do
next +— a highest-valued successor of current
if VALUE[next] = VALUE[current] then return current
current +— wext

end
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Hill climbing

* Local improvement algorithm

» Look around at states in the local neighborhood and choose the
one with the best value

value

Better

Worse

states

* What can go wrong?

CS 1571 Intro to Al

Hill climbing

+ Hill climbing can get trapped in the local optimum

global maximum

value

local maximum

slates
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Hill climbing

 Hill climbing can get clueless on plateaus

value

plateau

states
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Hill climbing and n-queens

» The quality of a configuration given by the number of
constraints violated

* Then: Hill climbing reduces the number of constraints
* Min-conflict strategy (heuristic):
— Choose randomly a variable with conflicts
— Choose its value such that it violates the fewest constraints

W W
14 £

Success !! But not always!!! The local optima problem!!!
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Simulated annealing

* Permits “bad” moves to states with lower value, thus escape
the local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

value

Always up

Sometimes
down

states
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Simulated annealing algorithm

» The probability of moving into a state with a higher value is 1
» The probability of moving into a state with a lower value is

AE/T
e

The probability is:
— Proportional to the value (energy) difference AFE
— Modulated through a temperature parameter T:
» for T — oo the probability of any move approaches 1

« for 7 — (0 the probability that a state with smaller
value is selected goes down and approaches 0

* Cooling schedule:
— Schedule of changes of a parameter T over iteration steps
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Simulated annealing

function SIMULATED-ANNEALING| problem, schedule) returns a solution state
inputs: problem. a problem
schedule. a mapping from time to “temperature”
static: current, anode
nexd, a node
T, a “temperature” controlling the probability of downward steps

current— MAKE-NODE({INITIAL-STATE[problen |}
for f+— | to = do

T schedule (1]

if 7=0 then return current

next+— arandomly selected successor of current

AE +— VALUE([rext] — VALUE[current]

if AE = 0 then current— pext

else current+— next only with probability T
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Simulated annealing algorithm

* Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

* Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

* Applications:
— VLSI design
— airline scheduling
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Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration;
— Changes to configurations are typically local

Can we do better?

* Assume we have two configurations with good values that are
quite different

» We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a
population of individual combinations
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Genetic algorithms

Algorithm idea:
* Create a population of random configurations
* Create a new population through:

— Biased selection of pairs of configurations from the
previous population

— Crossover (combination) of pairs
— Mutation of resulting individuals
* Evolve the population over multiple generation cycles

* Selection of configurations to be combined:
— Fitness function = value function

measures the quality of an individual (a state) in the
population
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Reproduction process in GA

» Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1

| M111010101100 } ‘ 111010010111 }—-—{ 111010010111 ‘
~[ 000110010111 |/>—<| 000110101100 |—{ 000110101100 |
6 249 T 111°1°1°m>_<‘ 111010101001 }—>{ 11110101001 ‘
5 20% [ 001110101100 |—»{ 00111010110f] |

{a) (b) (c) (dy (e)
Initial Population  Fitness Function Selection Cross—Owver Mutation

001110104001 ’/
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Genetic algorithms

function GENETIC- ALGORITHM{ population, FITNESS-FN) returns an individual
inputs: populafion, a set of individuals
FITMESS-FM, a function that measures the fitness of an individual

repeat
parenis+— SELECTION{ population, FITNESS-FN)
population +— REPRODUCTION( parents)
until some individual is fit enough
return the best individual in popudation, according to FITNESS-FN

Fitness function = value function
- measures the quality of an individual (a state) in the population
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Parametric optimization

* Configuration search:
— Optimizes the measure of the configuration quality
— Additional constraints are possible

* When state space we search is finite the search problem is
called a combinatorial optimization problem

* When parameters we want to find are real-valued
— parametric optimization problem

Parametric optimization:

» Configurations are described by a vector of free parameters
(variables) w with real-valued values

* Goal: find the set of parameters w that optimize the quality
measure f{w)
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Parametric optimization techniques

* Special cases (with efficient solutions):
— Linear programming
— Quadratic programming
* First-order methods:
— Gradient-ascent (descent)
— Conjugate gradient
* Second-order methods:
— Newton-Rhapson methods
— Levenberg-Marquardt

* Constrained optimization:
— Lagrange multipliers
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Gradient ascent method

* Gradient ascent: the same as hill-climbing, but in the
continuous parametric space w

S (w)

0
%f(w) |\

w * w

* Change the parameter value of w according to the gradient

we wrra 2 f(w)l..
ow
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Gradient ascent method
S (w)

0
%f(w) |\

w * w

* New value of the parameter

W — w*+aif(w)|w*
ow

a > 0 - alearning rate (scales the gradient changes)
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Gradient ascent method

» To get to the function minimum repeat (iterate) the gradient
based update few times

fw)

w (04 (D, (2, 3)

\%%

* Problems: local optima, saddle points, slow convergence

» More complex optimization techniques use additional

information (e.g. second derivatives)
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