CS 1571 Introduction to AI Lecture 7

Search for optimal configurations

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square

CS 1571 Intro to AI

Administration

- PS-2: due today
- PS-3: out, due next week
 - Programming part:
 - simulated annealing
 - genetic algorithms

Search for the optimal configuration

Configuration search problems:

• Are often enhanced with some quality measure

Quality measure

• reflects our preference towards each configuration (or state)

Goal

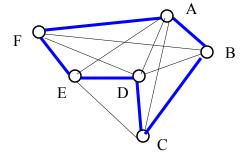
• find the configuration with the optimal quality

CS 1571 Intro to AI

Example: Traveling salesman problem

Problem:

A graph with distances



• Goal: find the shortest tour which visits every city once and returns to the start

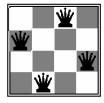
An example of a valid tour: ABCDEF

Example: N queens

- Some CSP problems do not have a quality measure
- The quality of a configuration in a CSP can be measured by the number of constraints violated
- Solving corresponds to the minimization of the number of constraint violations

of violations =3

of violations =1



of violations =0

CS 1571 Intro to AI

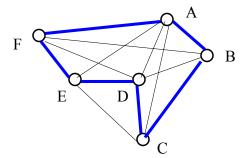
Local search methods

- Are often used to find solutions to large configuration search problems with an additional optimality measure
- Properties of local search algorithms:
 - $\ Search \ the \ space \ of \ "complete" \ configurations$
 - Operators make "local" changes to "complete" configurations
 - Keep track of just one state (the current state), not a memory of past states
 - !!! No search tree is necessary !!!

Example: Traveling salesman problem

Problem:

• A graph with distances



• **Goal:** find the shortest tour which visits every city once and returns to the start

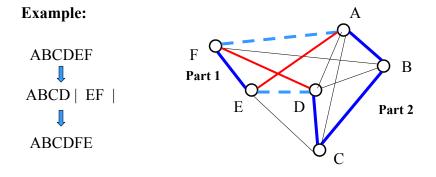
An example of a valid tour: ABCDEF

CS 1571 Intro to AI

Example: Traveling salesman problem

"Local" operator for generating the next state:

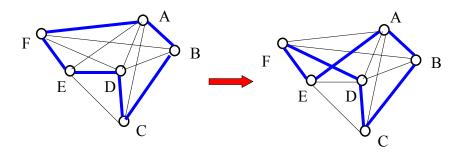
- divide the existing tour into two parts,
- reconnect the two parts in the opposite order



Example: Traveling salesman problem

"Local" operator:

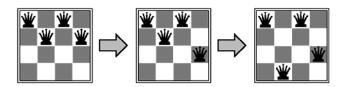
- generates the next configuration (state)



CS 1571 Intro to AIC

Example: N-queens

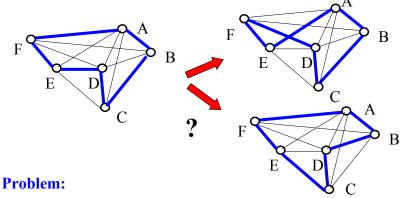
- "Local" operators for generating the next state:
 - Select a variable (a queen)
 - Reallocate its position



Searching configuration space

Local search algorithms

• keep only one configuration (the current configuration) active



• How to decide about which operator to apply?

CS 1571 Intro to AI

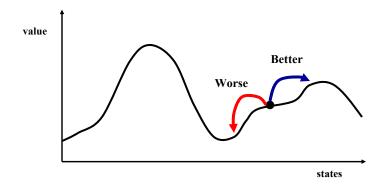
Local search algorithms

Two strategies to choose the configuration (state) to be visited next:

- Hill climbing
- Simulated annealing
- Later: Extensions to multiple current states:
 - Genetic algorithms
- Note: Maximization is inverse of the minimization $\min f(X) \Leftrightarrow \max [-f(X)]$

Hill climbing

- · Local improvement algorithm
- Look around at states in the local neighborhood and choose the one with the best value
- Assume: we want to maximize the



CS 1571 Intro to AI

Hill climbing

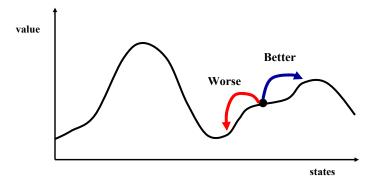
- Always choose the next best successor state
- Stop when no improvement possible

```
function HILL-CLIMBING(problem) returns a solution state
inputs: problem, a problem
static: current, a node
next, a node

current ← MAKE-NODE(INITIAL-STATE[problem])
loop do
next ← a highest-valued successor of current
if VALUE[next] < VALUE[current] then return current
current ← next
end
```

Hill climbing

- Local improvement algorithm
- Look around at states in the local neighborhood and choose the one with the best value

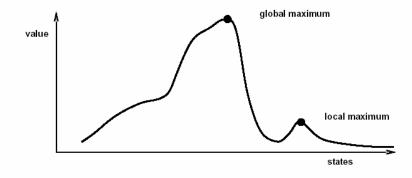


• What can go wrong?

CS 1571 Intro to AI

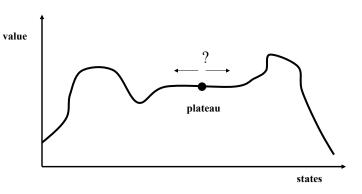
Hill climbing

• Hill climbing can get trapped in the local optimum



Hill climbing

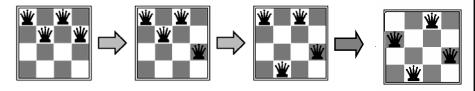
• Hill climbing can get clueless on plateaus



CS 1571 Intro to AI

Hill climbing and n-queens

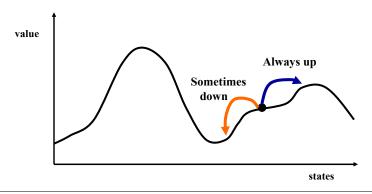
- The quality of a configuration given by the number of constraints violated
- Then: Hill climbing reduces the number of constraints
- Min-conflict strategy (heuristic):
 - Choose randomly a variable with conflicts
 - Choose its value such that it violates the fewest constraints



Success !! But not always!!! The local optima problem!!!

Simulated annealing

- Permits "bad" moves to states with lower value, thus escape the local optima
- **Gradually decreases** the frequency of such moves and their size (parameter controlling it **temperature**)



CS 1571 Intro to AI

Simulated annealing algorithm

- The probability of moving into a state with a higher value is 1
- The probability of moving into a state with a lower value is

$$e^{\Delta E/T}$$

The probability is:

- Proportional to the value (energy) difference ΔE
- Modulated through a temperature parameter T:
 - for $T \to \infty$ the probability of any move approaches 1
 - for $T \rightarrow 0$ the probability that a state with smaller value is selected goes down and approaches 0
- Cooling schedule:
 - Schedule of changes of a parameter T over iteration steps

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) returns a solution state

inputs: problem, a problem

schedule, a mapping from time to "temperature"

static: current, a node next, a node

T, a "temperature" controlling the probability of downward steps

 $current \leftarrow MAKE-NODE(INITIAL-STATE[problem])$

for $t \leftarrow 1$ to ∞ do

 $T \leftarrow schedule[t]$

if T=0 then return current

next ← a randomly selected successor of current

 $\Delta E \leftarrow Value[next] - Value[current]$

if $\Delta E > 0$ then $current \leftarrow next$

else $current \leftarrow next$ only with probability $e^{\Delta E/T}$

CS 1571 Intro to AI

Simulated annealing algorithm

- · Simulated annealing algorithm
 - developed originally for modeling physical processes (Metropolis et al, 53)
- Properties:
 - If T is decreased slowly enough the best configuration (state) is always reached
- Applications:
 - VLSI design
 - airline scheduling

Simulated evolution and genetic algorithms

- Limitations of simulated annealing:
 - Pursues one state configuration;
 - Changes to configurations are typically local

Can we do better?

- Assume we have two configurations with good values that are quite different
- We expect that the combination of the two individual configurations may lead to a configuration with higher value (Not guaranteed !!!)

This is the idea behind **genetic algorithms** in which we grow a population of individual combinations

CS 1571 Intro to AI

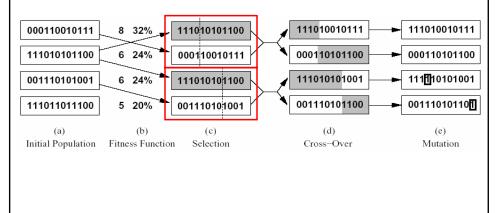
Genetic algorithms

Algorithm idea:

- Create a population of random configurations
- Create a new population through:
 - Biased selection of pairs of configurations from the previous population
 - Crossover (combination) of pairs
 - Mutation of resulting individuals
- Evolve the population over multiple generation cycles
- Selection of configurations to be combined:
 - Fitness function = value function
 measures the quality of an individual (a state) in the
 population

Reproduction process in GA

• Assume that a state configuration is defined by a set variables with two values, represented as 0 or 1



CS 1571 Intro to AI

Genetic algorithms

function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual

inputs: population, a set of individuals

FITNESS-FN, a function that measures the fitness of an individual

reneat

parents ← Selection(population, Fitness-Fn)

population ← REPRODUCTION(parents)

until some individual is fit enough

return the best individual in population, according to FITNESS-FN

Fitness function = value function

- measures the quality of an individual (a state) in the population

Parametric optimization

- Configuration search:
 - Optimizes the measure of the configuration quality
 - Additional constraints are possible
- When state space we search is finite the search problem is called a **combinatorial optimization problem**
- When parameters we want to find are real-valued
 - parametric optimization problem

Parametric optimization:

- Configurations are described by a vector of free parameters (variables) w with real-valued values
- Goal: find the set of parameters w that optimize the quality measure $f(\mathbf{w})$

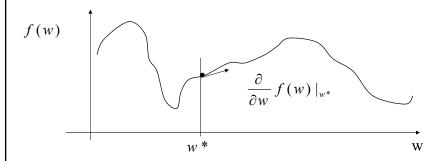
CS 1571 Intro to AI

Parametric optimization techniques

- Special cases (with efficient solutions):
 - Linear programming
 - Quadratic programming
- First-order methods:
 - Gradient-ascent (descent)
 - Conjugate gradient
- Second-order methods:
 - Newton-Rhapson methods
 - Levenberg-Marquardt
- Constrained optimization:
 - Lagrange multipliers

Gradient ascent method

• **Gradient ascent:** the same as hill-climbing, but in the continuous parametric space **w**

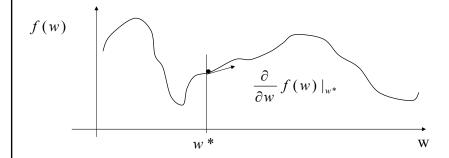


• Change the parameter value of w according to the gradient

$$w \leftarrow w^* + \alpha \frac{\partial}{\partial w} f(w)|_{w^*}$$

CS 1571 Intro to AI

Gradient ascent method



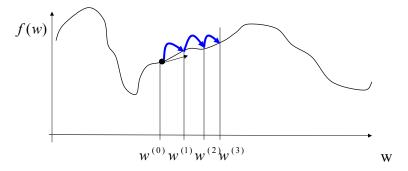
• New value of the parameter

$$w \leftarrow w^* + \alpha \frac{\partial}{\partial w} f(w)|_{w^*}$$

 $\alpha > 0$ - a learning rate (scales the gradient changes)

Gradient ascent method

• To get to the function minimum repeat (iterate) the gradient based update few times



- Problems: local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)