CS 1571 Introduction to Al
Lecture 7

Search for optimal configurations

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 1571 Intro to Al

Administration

* PS-2: due today
* PS-3: out, due next week
— Programming part:
* simulated annealing

* genetic algorithms

CS 1571 Intro to Al

Search for the optimal configuration

Configuration search problems:
* Are often enhanced with some quality measure

Quality measure

 reflects our preference towards each configuration (or state)

Goal
+ find the configuration with the optimal quality

CS 1571 Intro to Al

Example: Traveling salesman problem

Problem:
» A graph with distances

A

N
N

* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF

F
B

CS 1571 Intro to Al

Example: N queens

* Some CSP problems do not have a quality measure

* The quality of a configuration in a CSP can be measured by
the number of constraints violated

» Solving corresponds to the minimization of the number of
constraint violations

of violations =3 # of violations =1 # of violations =0

CS 1571 Intro to Al

Local search methods

* Are often used to find solutions to large configuration search
problems with an additional optimality measure

* Properties of local search algorithms:
— Search the space of “complete” configurations

— Operators make “local” changes to “complete”
configurations

— Keep track of just one state (the current state), not a
memory of past states

 !!! No search tree is necessary !!!

CS 1571 Intro to Al

Example: Traveling salesman problem

Problem:
* A graph with distances
A

|
* Goal: find the shortest tour which visits every city once and
returns to the start

An example of a valid tour: ABCDEF

CS 1571 Intro to Al

Example: Traveling salesman problem

“Local” operator for generating the next state:
» divide the existing tour into two parts,
» reconnect the two parts in the opposite order

Example:

ABCDEF

!

ABCD | EF |

!

ABCDFE

CS 1571 Intro to Al

Example: Traveling salesman problem

“Local” operator:

— generates the next configuration (state)

€S 1571 Intro to AIC

Example: N-queens

* “Local” operators for generating the next state:
— Select a variable (a queen)
— Reallocate its position

wﬂf%ﬂf
-5

CS 1571 Intro to Al

Searching configuration space

Local search algorithms
» keep only one configuration (the current configuration) active

Problem:
» How to decide about which operator to apply?

CS 1571 Intro to Al

Local search algorithms

Two strategies to choose the configuration (state) to be visited
next:

— Hill climbing
— Simulated annealing

 Later: Extensions to multiple current states:
— Genetic algorithms

* Note: Maximization is inverse of the minimization

min f(X) < max [- f(X)]

CS 1571 Intro to Al

Hill climbing

* Local improvement algorithm

» Look around at states in the local neighborhood and choose the

one with the best value
* Assume: we want to maximize the

value

Better

Worse

states

CS 1571 Intro to Al

Hill climbing

» Always choose the next best successor state
» Stop when no improvement possible

function HILL-CLIMBING(problent) returns a solution state
inputs: prablem. a problem
statie: current. anode
next, a node

currents— MAKE-NODE(INITIAL-STATE [problem))

loop do
next +— a highest-valued successor of current
if VALUE[next] = VALUE[current] then return current
current +— wext

end

CS 1571 Intro to Al

Hill climbing

* Local improvement algorithm

» Look around at states in the local neighborhood and choose the
one with the best value

value

Better

Worse

states

* What can go wrong?

CS 1571 Intro to Al

Hill climbing

+ Hill climbing can get trapped in the local optimum

global maximum

value

local maximum

slates

CS 1571 Intro to Al

Hill climbing

 Hill climbing can get clueless on plateaus

value

plateau

states

CS 1571 Intro to Al

Hill climbing and n-queens

» The quality of a configuration given by the number of
constraints violated

* Then: Hill climbing reduces the number of constraints
* Min-conflict strategy (heuristic):
— Choose randomly a variable with conflicts
— Choose its value such that it violates the fewest constraints

W W
14 £

Success !! But not always!!! The local optima problem!!!

CS 1571 Intro to Al

Simulated annealing

* Permits “bad” moves to states with lower value, thus escape
the local optima

* Gradually decreases the frequency of such moves and their
size (parameter controlling it — temperature)

value

Always up

Sometimes
down

states

CS 1571 Intro to Al

Simulated annealing algorithm

» The probability of moving into a state with a higher value is 1
» The probability of moving into a state with a lower value is

AE/T
e

The probability is:
— Proportional to the value (energy) difference AFE
— Modulated through a temperature parameter T:
» for T — oo the probability of any move approaches 1

« for 7 — (0 the probability that a state with smaller
value is selected goes down and approaches 0

* Cooling schedule:
— Schedule of changes of a parameter T over iteration steps

CS 1571 Intro to Al

Simulated annealing

function SIMULATED-ANNEALING| problem, schedule) returns a solution state
inputs: problem. a problem
schedule. a mapping from time to “temperature”
static: current, anode
nexd, a node
T, a “temperature” controlling the probability of downward steps

current— MAKE-NODE({INITIAL-STATE[problen |}
for f+— | to = do

T schedule (1]

if 7=0 then return current

next+— arandomly selected successor of current

AE +— VALUE([rext] — VALUE[current]

if AE = 0 then current— pext

else current+— next only with probability T

CS 1571 Intro to Al

Simulated annealing algorithm

* Simulated annealing algorithm

— developed originally for modeling physical processes
(Metropolis et al, 53)

* Properties:

— If T is decreased slowly enough the best configuration
(state) is always reached

* Applications:
— VLSI design
— airline scheduling

CS 1571 Intro to Al

Simulated evolution and genetic algorithms

* Limitations of simulated annealing:
— Pursues one state configuration;
— Changes to configurations are typically local

Can we do better?

* Assume we have two configurations with good values that are
quite different

» We expect that the combination of the two individual
configurations may lead to a configuration with higher value

(Not guaranteed !!!)

This is the idea behind genetic algorithms in which we grow a
population of individual combinations

CS 1571 Intro to Al

Genetic algorithms

Algorithm idea:
* Create a population of random configurations
* Create a new population through:

— Biased selection of pairs of configurations from the
previous population

— Crossover (combination) of pairs
— Mutation of resulting individuals
* Evolve the population over multiple generation cycles

* Selection of configurations to be combined:
— Fitness function = value function

measures the quality of an individual (a state) in the
population

CS 1571 Intro to Al

Reproduction process in GA

» Assume that a state configuration is defined by a set variables
with two values, represented as 0 or 1

| M111010101100 } ‘ 111010010111 }—-—{ 111010010111 ‘
~[000110010111 |/>—<| 000110101100 |—{ 000110101100 |
6 249 T 111°1°1°m>_<‘ 111010101001 }—>{ 11110101001 ‘
5 20% [001110101100 |—»{ 00111010110f] |

{a) (b) (c) (dy (e)
Initial Population Fitness Function Selection Cross—Owver Mutation

001110104001 ’/

CS 1571 Intro to Al

Genetic algorithms

function GENETIC- ALGORITHM{ population, FITNESS-FN) returns an individual
inputs: populafion, a set of individuals
FITMESS-FM, a function that measures the fitness of an individual

repeat
parenis+— SELECTION{ population, FITNESS-FN)
population +— REPRODUCTION(parents)
until some individual is fit enough
return the best individual in popudation, according to FITNESS-FN

Fitness function = value function
- measures the quality of an individual (a state) in the population

CS 1571 Intro to Al

Parametric optimization

* Configuration search:
— Optimizes the measure of the configuration quality
— Additional constraints are possible

* When state space we search is finite the search problem is
called a combinatorial optimization problem

* When parameters we want to find are real-valued
— parametric optimization problem

Parametric optimization:

» Configurations are described by a vector of free parameters
(variables) w with real-valued values

* Goal: find the set of parameters w that optimize the quality
measure f{w)

CS 1571 Intro to Al

Parametric optimization techniques

* Special cases (with efficient solutions):
— Linear programming
— Quadratic programming
* First-order methods:
— Gradient-ascent (descent)
— Conjugate gradient
* Second-order methods:
— Newton-Rhapson methods
— Levenberg-Marquardt

* Constrained optimization:
— Lagrange multipliers

CS 1571 Intro to Al

Gradient ascent method

* Gradient ascent: the same as hill-climbing, but in the
continuous parametric space w

S (w)

0
%f(w) |\

w * w

* Change the parameter value of w according to the gradient

we wrra 2 f(w)l..
ow

CS 1571 Intro to Al

Gradient ascent method
S (w)

0
%f(w) |\

w * w

* New value of the parameter

W — w*+aif(w)|w*
ow

a > 0 - alearning rate (scales the gradient changes)

CS 1571 Intro to Al

Gradient ascent method

» To get to the function minimum repeat (iterate) the gradient
based update few times

fw)

w (04 (D, (2, 3)

\%%

* Problems: local optima, saddle points, slow convergence

» More complex optimization techniques use additional

information (e.g. second derivatives)

CS 1571 Intro to Al

