
1

CS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 5

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Informed (heuristic) search.

CS 1571 Intro to AI

Administration

• PS–1 due today
– Report before the class begins
– Programs through ftp

• PS-2 is out
– on the course web page
– due next week on Tuesday, September 16, 2003

• Report
• Programs

2

CS 1571 Intro to AI

Evaluation-function driven search
• A search strategy can be defined in terms of a node

evaluation function
• Evaluation function

– Denoted
– Defines the desirability of a node to be expanded next

• Evaluation-function driven search: expand the node (state)
with the best evaluation-function value

• Implementation: successors of the expanded node are
inserted into the priority queue in the decreasing order of
their evaluation function value

)(nf

CS 1571 Intro to AI

Uniform cost search

• Uniform cost search (Dijkstra’s shortest path):
– A special case of the evaluation-function driven search

• Path cost function ;
– path cost from the initial state to n

• Uniform-cost search:
– Can handle general minimum cost path-search problem:
– weights or costs associated with operators (links).

• Note: Uniform cost search relies on the problem definition only
– It is an uninformed search method

)(ng
)()(ngnf =

3

CS 1571 Intro to AI

Best-first search

Best-first search
• incorporates a heuristic function, , into the evaluation

function to guide the search.

Heuristic function:
• Measures a potential of a state (node) to reach a goal
• Typically in terms of some distance to a goal estimate

Example of a heuristic function:
• Assume a shortest path problem with city distances on

connections
• Straight-line distances between cities give additional

information we can use to guide the search

)(nf
)(nh

CS 1571 Intro to AI

Example: traveler problem with straight-line
distance information

• Straight-line distances give an estimate of the cost of the path
between the two cities

366

160

4

CS 1571 Intro to AI

Best-first search

Best-first search
• incorporates a heuristic function, , into the evaluation

function to guide the search.
• heuristic function: measures a potential of a state (node) to

reach a goal
Special cases (differ in the design of evaluation function):

– Greedy search

– A* algorithm

+ iterative deepening version of A* : IDA*

)(nf

)()(nhnf =

)()()(nhngnf +=

)(nh

CS 1571 Intro to AI

Greedy search method

• Evaluation function is equal to the heuristic function

• Idea: the node that seems to be the closest to the goal is
expanded first

)()(nhnf =

5

CS 1571 Intro to AI

Greedy search

Arad 366

f(n)=h(n)

queue Arad 366

CS 1571 Intro to AI

Greedy search

Arad

Zerind Sibiu Timisoara

366
75

140
118

374 253 329

queue Sibiu 253
Timisoara 329
Zerind 374

f(n)=h(n)

6

CS 1571 Intro to AI

Greedy search

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

Fagaras 178
Rimniciu V. 193
Timisoara 329
Arad 366
Zerind 374
Oradea 380

queue

f(n)=h(n)

CS 1571 Intro to AI

Greedy search

Arad

BucharestSibiu

Sibiu Timisoara

75
140

118

21199

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

374 253 329
140 151 99 80

366 380 178 193

253 0

Bucharest 0
Rimniciu V. 193
Sibiu 253
Timisoara 329
Arad 366
Zerind 374
Oradea 380

queue

f(n)=h(n)

7

CS 1571 Intro to AI

Properties of greedy search
• Completeness: ?

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

CS 1571 Intro to AI

Properties of greedy search
• Completeness: No.

We can loop forever. Nodes that seem to be the best choices
can lead to cycles. Elimination of state repeats can solve the
problem.

• Optimality: No.
Even if we reach the goal, we may be biased by a bad
heuristic estimate. Evaluation function disregards the cost of
the path built so far.

• Time complexity:

• Memory (space) complexity:

)(mbO

)(mbO

Worst case !!! But often better!

Often better!

8

CS 1571 Intro to AI

A* search

• The problem with the greedy search is that it can keep
expanding paths that are already very expensive.

• The problem with the uniform-cost search is that it uses only
past exploration information (path cost), no additional
information is utilized

• A* search

• Additional A*condition: admissible heuristic

)()()(nhngnf +=

)(ng - cost of reaching the state
)(nh - estimate of the cost from the current state to a goal
)(nf - estimate of the path length

)()(* nhnh ≤ for all n

CS 1571 Intro to AI

A* search example

Arad 366

f(n)

queue Arad 366

9

CS 1571 Intro to AI

A* search example

Arad

Zerind Sibiu Timisoara

366
75

140
118

449 393 447

queue Sibiu 393
Timisoara 447
Zerind 449

f(n)

CS 1571 Intro to AI

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Rimnicu V. 413
Fagaras 417
Timisoara 447
Zerind 449
Oradea 526
Arad 646

queue

f(n)

10

CS 1571 Intro to AI

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 413 553

146 95 80

447

Pitesti 413
Fagaras 417
Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Arad 646

queue

f(n)

CS 1571 Intro to AI

A* search example

Arad

Zerind Sibiu Timisoara

75
140

118

Zerind Sibiu

Fagaras Rimnicu
Vilcea

OradeaArad

366

140 151 99 80

646 526 417 413

449 393 447

Pitesti SibiuCraiova

526 413 553

146 95 80

Craiova Bucharest
607

615 416

97 138 101

Rimnicu
Vilcea

447447

Bucharest 416
Fagaras 417
Timisoara 447
Zerind 449
Oradea 526
Craiova 526
Sibiu 553
Rimnicu V. 607
Arad 646

queue

f(n)

11

CS 1571 Intro to AI

Properties of A* search

• Completeness: ?

• Optimality: ?

• Time complexity:
– ?

• Memory (space) complexity:
– ?

CS 1571 Intro to AI

Properties of A* search

• Completeness: Yes.

• Optimality: ?

• Time complexity:
– ?

• Memory (space) complexity:
– ?

12

CS 1571 Intro to AI

Optimality of A*

• In general, a heuristic function :
Can overestimate, be equal or underestimate the true distance

of a node to the goal
• Is the A* optimal for the arbitrary heuristic function?
• No !

• Admissible heuristic condition
– Never overestimate the distance to the goal !!!

Example: the straight-line distance in the travel problem
never overestimates the actual distance

Claim: A* search (with an admissible heuristic !!) is optimal

)()(* nhnh ≤ for all n

)(* nh

)(nh

CS 1571 Intro to AI

Optimality of A* (proof)

• Let G1 be the optimal goal (with the minimum path distance).
Assume that we have a sub-optimal goal G2. Let n be a node
that is on the optimal path and is in the queue together with G2

admissible is since)(
suboptimal is G2 since)1(

0)2(since)2()2(

hnf
Gg

GhGgGf

≥
>

==

start

G2

G1

n

Then:

And thus A* never selects G2 before n

13

CS 1571 Intro to AI

Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
– ?

• Memory (space) complexity:
– ?

CS 1571 Intro to AI

Properties of A* search

• Completeness: Yes.

• Optimality: Yes (with the admissible heuristic)

• Time complexity:
– Order roughly the number of nodes with f(n) smaller

than the cost of the optimal path g*

• Memory (space) complexity:
– Same as time complexity (all nodes in the memory)

14

CS 1571 Intro to AI

Admissible heuristics

• Heuristics are designed based on relaxed version of problems
• Example: the 8-puzzle problem

• Admissible heuristics:
1. number of misplaced tiles
2. Sum of distances of all tiles from their goal positions

(Manhattan distance)

Initial position Goal position

CS 1571 Intro to AI

Admissible heuristics

• We can have multiple admissible heuristics for the same
problem

• Dominance: Heuristic function dominates if

• Combination: two or more admissible heuristics can be
combined to give a new admissible heuristics
– Assume two admissible heuristics

)()(21 nhnhn ≥∀

1h 2h

))(),(max()(213 nhnhnh =

21 , hh

Then:

is admissible

15

CS 1571 Intro to AI

IDA*

Iterative deepening version of A*
• Progressively increases the evaluation function limit (instead

of the depth limit)
• Performs limited-cost depth-first search for the current

evaluation function limit
– Keeps expanding nodes in the depth first manner up to the

evaluation function limit
Problem: the amount by which the evaluation limit should be

progressively increased
Solutions:
• peak over the previous step boundary to guarantee that in

the next cycle more nodes are expanded
• Increase the limit by a fixed cost increment – say u

CS 1571 Intro to AI

IDA*

Solution 1: peak over the previous step boundary to
guarantee that in the next cycle more nodes are expanded

Properties:
– the choice of the new cost limit influences how many nodes

are expanded in each iteration
– We may find a sub-optimal solution

• Fix: complete the search up to the limit to find the best

Solution 2: Increase the limit by a fixed cost increment (u)
Properties:

– Too many or too few nodes expanded – no control of the
number of nodes

– The solution of accuracy < u is found

