
1

CS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 3

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Uninformed search methods

CS 1571 Intro to AI

Announcements
• Homework 1 is out

– Access through the course web page
http://www.cs.pitt.edu/~milos/courses/cs1571/

– Two things to download:
• Problem statement
• C/C++ programs you will need for the assignment

• Due date: September 9, 2003 before the lecture
• Submission:

– Reports: on the paper at the lecture
– Programs: electronic submissions

Submission guidelines:
http://www.cs.pitt.edu/~milos/courses/cs1571/program-submissions.html

2

CS 1571 Intro to AI

Problem-solving as search
• Many search problems in practice can be converted to graph

search problems
• A graph search problem can be described in terms of:

– A set of states representing different world situations
– Initial state
– Goal condition
– Operators defining valid moves between states

• Two types of search:
– Configuration search: solution is a state satisfying the

goal condition
– Path search: solution is a path to a goal state

• Optimal solution = a solution with the optimal value
– E.g. shortest path between the two cities, or
– a desired n-queen configuration

CS 1571 Intro to AI

Searching for the solution

Search: exploration of the state space through successive
application of operators from the initial state and goal testing

Search process can be though of as a process of building a
search tree, with nodes corresponding to explored states

Search tree: a data structure that represents all paths from the
initial state that has been explored during the search so far

Arad

Zerind Sibiu Timisoar
a

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

3

CS 1571 Intro to AI

Search tree

Arad

Zerind Sibiu Timisoa
ra

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

A branch in the search tree
= path in the graph

CS 1571 Intro to AI

General search algorithm

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore return failure
choose a leaf node of the tree to expand next according to strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

4

CS 1571 Intro to AI

General search algorithm

• Search methods can differ in how they explore the space, that
is how they choose the node to expand next

General-search (problem, strategy)
initialize the search tree with the initial state of problem
loop

if there are no candidate states to explore return failure
choose a leaf node of the tree to expand next according to the strategy
if the node satisfies the goal condition return the solution
expand the node and add all of its successors to the tree

end loop

CS 1571 Intro to AI

Implementation of search
• Search methods can be implemented using the queue structure

• Candidates are added to nodes representing the queue structure

General search (problem, Queuing-fn)
nodes Make-queue(Make-node(Initial-state(problem)))
loop

if nodes is empty then return failure
node Remove-node(nodes)
if Goal-test(problem) applied to State(node) is satisfied then return node
nodes Queuing-fn(nodes, Expand(node, Operators(node)))

end loop

←

←

←

5

CS 1571 Intro to AI

Implementation of the search tree
structure

• A search tree node is a data-structure constituting part of a
search tree

• Expand node function – applies Operators to the state
represented by the search tree node.

ST
Node

State

state

children

parent

Other attributes:
- state value (cost)
- depth
- path cost

CS 1571 Intro to AI

Uninformed search methods

• Many different ways to explore the state space (build a tree)

Uninformed search methods:
– use only information available in the problem definition

• Breadth first search

• Depth first search

• Iterative deepening

• Bi-directional search

For the minimum cost path problem:

• Uniform cost search

6

CS 1571 Intro to AI

Search methods
Properties of search methods :
• Completeness.

– Does the method find the solution if it exists?

• Optimality.
– Is the solution returned by the algorithm optimal? Does it

give a minimum length path?

• Space and time complexity.
– How much time it takes to find the solution?
– How much memory is needed to do this?

CS 1571 Intro to AI

Parameters to measure complexities.
• Space and time complexity.

– Complexities are measured in terms of parameters:
• b – maximum branching factor
• d – depth of the optimal solution
• m – maximum depth of the state space

Branching factor

Number of
operators

7

CS 1571 Intro to AI

Breadth first search (BFS)

• The shallowest node is expanded first

CS 1571 Intro to AI

Breadth-first search
• Expand the shallowest node first
• Implementation: put successors to the end of the queue (FIFO)

Arad
Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

8

CS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

OradeaArad

Sibiu
Timisoara
Arad
Oradea

queue

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

9

CS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

Timisoara
Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea

queue

Arad Lugoj

CS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea
Arad
Lugoj

queue

10

CS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity: ?

• Memory (space) complexity: ?

CS 1571 Intro to AI

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d= bd

Total nodes:)(dbO

11

CS 1571 Intro to AI

BFS –memory complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d=bd

Total nodes:)(dbO

Count nodes kept in the tree structure and/or in the queue

CS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity:

every node of the tree is kept in the memory

)(1 2 dd bObbb =++++ K

)(dbO

12

CS 1571 Intro to AI

Depth-first search (DFS)

• The deepest node is expanded first
• Backtrack when the path cannot be further expanded

CS 1571 Intro to AI

Depth-first search
• The deepest node is expanded first
• Implementation: put successors to the beginning of the queue

Arad Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

13

CS 1571 Intro to AI

Depth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 1571 Intro to AI

Depth-first search

Arad

Zerind Sibiu Timisoara

Oradea

Arad
Oradea
Sibiu
Timisoara

queue

Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

14

CS 1571 Intro to AI

Depth-first search

Arad

Zerind Sibiu Timisoara

Sibiu TimisoaraZerind

Note: Arad – Zerind – Arad cycle

Zerind
Sibiu
Timisoara
Oradea
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. Infinite loops can occur.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity: ?

• Memory (space) complexity: ?

15

CS 1571 Intro to AI

DFS – time complexity

b

m

depth number of nodes

0 1

1 21=2

2

3

m

22=4

23=8

2m-2m-d

Total nodes:)(mbO

d

d 2d

CS 1571 Intro to AI

DFS – memory complexity

b

m

depth number of nodes

0 1

1 2 = b

2

3

m

2

2

2

Total nodes:)(bmO

Count nodes kept in the tree structure and/or in the queue

16

CS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. Infinite loops can occur.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity:

the tree size we need to keep is linear in the maximum depth
of the search tree m

)(mbO

)(bmO

CS 1571 Intro to AI

Limited-depth depth first search

• The limit (l) on the depth of the depth-first exploration

)(lbO

)(blO
l - is the given limit

• Time complexity:

• Memory complexity:

Limit l=2

Not explored

l

17

CS 1571 Intro to AI

Limited depth depth-first search

• Avoids pitfalls of depth first search
• Cutoff on the maximum depth of the tree
• If we know that the solution length is within a limit the

solution the algorithm gives is complete
• How to design the limit?

– 20 cities in the travel problem
– We need to consider only paths of length < 20

• Without the known limit the search may fail to find the
solution

• Time complexity:
• Memory complexity:

)(lbO
)(blO

l - is the limit

CS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Based on the idea of the limited-depth search, but
• It resolves the difficulty of knowing the depth limit ahead of

time.

Idea: try all depth limits in an increasing order.
That is, search first with the depth limit l=0, then l=1, l=2,
and so on until the solution is reached

Iterative deepening combines advantages of the depth-first and
breadth-first search with only moderate computational
overhead

18

CS 1571 Intro to AI

Iterative deepening algorithm (IDA)

• Progressively increases the limit of the limited-depth depth-
first search

Limit 0

Limit 1

Limit 2

CS 1571 Intro to AI

Iterative deepening

Arad

Cutoff depth = 0

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

19

CS 1571 Intro to AI

Iterative deepening

Arad

Cutoff depth = 0

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

CS 1571 Intro to AI

Iterative deepening

Arad

Cutoff depth = 1

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

20

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

21

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 1

22

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 2

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Cutoff depth = 2

23

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind

OradeaArad

Sibiu Timisoara

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

Cutoff depth = 2

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind

OradeaArad

Sibiu Timisoara

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

Cutoff depth = 2

24

CS 1571 Intro to AI

Iterative deepening

Arad

Zerind

OradeaArad

Sibiu Timisoara

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

Cutoff depth = 2

CS 1571 Intro to AI

Arad

Iterative deepening

Arad

Zerind Sibiu TimisoaraSibiu

Fagaras Rimnicu
Vilcea

OradeaArad Arad LugojOradea

Cutoff depth = 2

25

CS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.
(the same as BFS when limit is always increased by 1)

• Optimality: Yes, for the shortest path.
(the same as BFS)

• Time complexity:
?

• Memory (space) complexity:
?

CS 1571 Intro to AI

IDA – time complexity

)1(O)(bO)(2bO)(dbO

Level 0 Level 1 Level 2 Level d

)(dbO

d

26

CS 1571 Intro to AI

IDA – memory complexity

)1(O)(bO)2(bO)(dbO

Level 0 Level 1 Level 2 Level d

)(dbO

d

CS 1571 Intro to AI

Properties of IDA

• Completeness: Yes. The solution is reached if it exists.
(the same as BFS)

• Optimality: Yes, for the shortest path.
(the same as BFS)

• Time complexity:

exponential in the depth of the solution d
worse than BFS, but asymptotically the same

• Memory (space) complexity:

much better than BFS

)()()()()1(21 dd bObObObOO =++++ K

)(dbO

27

CS 1571 Intro to AI

Elimination of state repeats
While searching the state space for the solution we can encounter

the same state many times.
Question: Is it necessary to keep and expand all copies of states

in the search tree?
Two possible cases:
(A) Cyclic state repeats
(B) Non-cyclic state repeats A

A

B

B

Search tree

CS 1571 Intro to AI

Elimination of cycles

Case A: Corresponds to the path with a cycle
Can the branch (path) in which the same state is visited twice ever

be a part of the optimal (shortest) path between the initial state
and the goal?

???

A

A

28

CS 1571 Intro to AI

Elimination of cycles

Case A: Corresponds to the path with a cycle
Can the branch (path) in which the same state is visited twice ever

be a part of the optimal (shortest) path between the initial state
and the goal? No !!

Branches representing cycles cannot be the part of the shortest
solution and can be eliminated.

A

A

CS 1571 Intro to AI

Elimination of cycles

How to check for cyclic state repeats:
Check ancestors in the tree structure.
Do not expand the node with the state that is the same as the state

in one of its ancestors.

A

A

29

CS 1571 Intro to AI

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from
the initial state

Is one of the nodes nodeB-1, nodeB-2 better or preferable?
?

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 1571 Intro to AI

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from
the initial state

Is one of the nodes nodeB-1, nodeB-2 better or preferable?
Yes. nodeB-1 represents the shorter path between the initial
state and B

B

B

Root of the search tree

nodeB-1

nodeB-2

30

CS 1571 Intro to AI

Elimination of non-cyclic state repeats

Since we are happy with the optimal solution nodeB-2 can be
eliminated. It does not affect the optimality of the solution.

Problem: Nodes can be encountered in different order during
different search strategies.

B

B

Root of the search tree

nodeB-1

nodeB-2

CS 1571 Intro to AI

Elimination of non-cyclic state repeats with
BFS

Breadth FS is well behaved with regard to non-cyclic state
repeats: nodeB-1 is always expanded before nodeB-2

• Order of expansion determines the correct elimination strategy
• we can safely eliminate the node that is associated with the state

that has been expanded before

B

B

Root of the search tree

nodeB-1

nodeB-2

31

CS 1571 Intro to AI

Elimination of state repeats for the BFS

For the breadth-first search (BFS)
• we can safely eliminate all second, third, fourth, etc.

occurrences of the same state
• this rule covers both cyclic and non-cyclic repeats !!!

Implementation of all state repeat elimination through marking:
• All expanded states are marked
• All marked states are stored in a special data structure

(a hash table)
• Checking if the node has ever been expanded corresponds to the

mark structure lookup

CS 1571 Intro to AI

Elimination of non-cyclic state repeats with
DFS

Depth FS: nodeB-2 is expanded before nodeB-1
• The order of node expansion does not imply correct elimination

strategy
• we need to remember the length of the path between nodes to

safely eliminate them

B

B

Root of the search tree

nodeB-1

nodeB-2

32

CS 1571 Intro to AI

Elimination of all state redundancies

• General strategy: A node is redundant if there is another
node with exactly the same state and a shorter path from the
initial state
– Works for any search method
– Uses additional path length information

Implementation: marking with the minimum path value:
• The new node is redundant and can be eliminated if

– it is in the hash table (it is marked), and
– its path is longer or equal to the value stored.

• Otherwise the new node cannot be eliminated and it is entered
together with its value into the hash table. (if the state was in
the hash table the new path value is better and needs to be
overwritten.)

